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Abstract—Cloud Computing is an emerging technology in
the area of parallel and distributed computing. Clouds consist
of a collection of virtualized resources, which include both
computational and storage facilities that can be provisioned on
demand, depending on the users’ needs. Gang Scheduling is an
efficient technique for scheduling parallel jobs, already applied in
the areas of Grid and Cluster computing. This paper studies the
application of Gang Scheduling on a Cloud Computing model,
based on the architecture of the Amazon Elastic Compute Cloud
(EC2). The study takes into consideration both performance
and cost while integrating mechanisms for job migration and
handling of job starvation. The number of Virtual Machines
(VMs) available at any moment is dynamic and scales according
to the demands of the jobs being serviced. The aforementioned
model is studied through simulation in order to analyze the
performance and overall cost of Gang Scheduling with migrations
and starvation handling. Results highlight that this scheduling
strategy can be effectively deployed on Clouds, and that cloud
platforms can be viable for HPC or high performance enterprise
applications.

Index Terms—Cloud Computing, Gang Scheduling, HPC, Vir-
tual Machines

I. INTRODUCTION

Cloud computing refers to the model of computing as
a utility, just like water and electricity, where users can
have access to vast computational resources based on their
requirements. Infrastructure-as-a-Service (IaaS) clouds differ
from older models, like the Grid, in that they do not pose
any restrictions on the software or types of services that are
available to the user. In fact Clouds offer the ability to utilize
any type of software, either existing or custom-made.

The importance of Cloud computing lies in the opportunity
for small companies and organizations to have access to
computing infrastructure without the need for prior investment.
Therefore ideas that would have required major capital invest-
ment, can be implemented on the cloud with minimal costs
and reduced risk.

It quickly becomes obvious that Cloud computing can also
be applied in the area of HPC. Small institutions and individual
scientific teams can now have access to large computational
resources not only through the Grid, with all its restrictions

and limitations, but also through the Cloud which provides
an infrastructure platform with virtually infinite resources at a
fraction of the cost of maintaining a private cluster, and on a
flexible pay-per-use model.

In the core of any distributed system lies its job scheduler
which is responsible for the allocation of jobs to servers,
or VMs in our case. Usually, the scheduling methods imple-
mented in the scheduler aim for better response times and
lower slowdowns, by minimizing unnecessary delays [1]. In
our model, the scheduler must also tend to the cost of the lease
time of VMs aiming for a better cost-to-performance ratio.
The modeled system, implements a special case of parallel
job scheduling called Gang Scheduling in which jobs consist
of tasks that must be scheduled to run simultaneously and
concurrently since they are in frequent communication with
each other. This requires a one-to-one mapping between tasks
and VMs [2], and avoids possible bottlenecks or deadlocks,
caused by tasks waiting for input from other tasks that are not
running.

Gang scheduling has been extensively studied in the past
in the area of distributed and cluster systems [1]–[7]. Karatza
in [5]–[7] studied the performance of Adaptive First Come
First Serve (AFCFS) and Largest Job First Served (LJFS).
Also in [8], [9] Karatza has studied the application of Gang
Scheduling along with I/O scheduling and processor failures.
Papazachos and Karatza in [1] have studied the application of
gang scheduling in two cluster systems. The aforementioned
publications applied Gang Scheduling schemes in static sys-
tems with a preset amount of servers and single ranges for job
sizes.

Elasticity in a Grid modeled system using Virtual-
Computers as processing units was considered by Nie and
Xu in [10]. However this publication focused on non-parallel
jobs with deadlines and aimed to maximize utilization while
maintaining low failure rates.

Scheduling strategies on Cloud computing platforms have
been studied before. Assunção et al. in [11] studied the exten-
sion of private clusters through the Cloud. In [12] Sotomayor
et al. used the Haizea VM management architecture to study
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Fig. 1. The system model

Virtual Machine usage in batch scheduling of parallel jobs.
In these models jobs’ tasks did not need to inter-operate and
could be scheduled independently.

In [13], we studied the application of gang scheduling
policies in a distributed cloud computing system with dynamic
provisioning of VMs. We utilized the two job scheduling
algorithms mentioned above AFCFS and LJFS, and conducted
simulations for various workloads and multiple job size ranges.
The results assessed both the performance and the cost-
efficiency of the scheduling algorithms. However, this former
work of ours did not consider the migration of job tasks in
order the improve response times and reduce fragmentation of
jobs, nor did it take into account that in high workloads the
adaptive algorithms applied may cause starvation for many
of the waiting jobs. In this new study, we integrate both a
migration mechanism and a starvation handling system into
our model, and compare the effect that these methods have
on the overall performance and cost-efficiency of the model.
To the best of the authors’ knowledge, previous studies have
not considered the application of gang scheduling in such a
complex model based on a Cloud computing architecture.

The rest of this paper is organized as follows. Section II
provides a specification of the system and workload models.
Section III describes the strategies that were applied in job
scheduling, in the migration mechanism and the starvation
handling system. In section IV, we discuss the VM handling
methods that have been implemented. Section V presents the
metrics used in the assessment of system performance and
cost, the parameters of the simulation and the results along
with their analysis. Finally section VI offers our conclusive
remarks.

II. SYSTEM & WORKLOAD MODELS

The simulation model developed consists of a dynamic
cluster of VMs along with a Dispatcher VM (DVM). While
the system initially leases no VMs its size can grow or shrink
dynamically up to a maximum limit of VMmax = 120 VMs,
a limit described in [14].

Every VM implements its own waiting queue where the
DVM is able to dispatch parallel jobs’ tasks. The DVM also
has a queue for jobs that were unable to be dispatched either
due to VM inadequacy at the time of their arrival or due to

system load. For simplicity’s sake, the DVM is not included in
the total VM count. Also, the mechanisms for job migration
and starvation handling are considered to be controlled by the
DVM.

Communication between VMs is considered contention-
free, and any communication latencies are implicitly included
in the jobs’ execution time. We do consider, however, explicit
delays when jobs get delayed in the DVM’s queue for the
reasons discussed previously.

Furthermore, VMs are considered to belong in the same
EC2 instance class and thus have identical characteristics.
Though VMs can suffer from performance inequalities, as
is true with non-virtualized systems, studies have shown that
VMs can provide near homogeneous performance as long as
not I/O takes place [15]. Since in our study we do not consider
I/O we assume that any overhead due to temporal performance
difference is implicitly included in the execution time of jobs.

Gang scheduling requires that the tasks of a job run in
parallel [7], and therefore each job requires a number of free
VMs equal to its degree of parallelism in order to execute.
In our model, degrees of parallelism are random numbers that
follow the discrete uniform distribution and fall under two
categories of size:

1) Low-Parallelism Jobs, with job sizes in the range
[1 . . . 16] with a probability of q.

2) High-Parallelism Jobs, with job sizes in the range
[17 . . . 32] with a probability of 1− q.

where q is the job size coefficient which determines the amount
of jobs that belong to the first or the second category.

Thus the Average Job Size (AJS) is computed in the
following way:

AJS = qE([1 . . . 16]) + (1− q)E([17 . . . 32]) (1)

Where E is the mean value of the discrete uniform distribution
for the equivalent range.

The mean inter-arrival time of jobs is exponentially dis-
tributed with a mean of 1/λ and the mean service time is
exponentially distributed with a mean of 1/µ. Service time
and job sizes are not correlated, ergo a low parallelism job
can still have a long service time.

Finally studies have shown that context switching in gang
scheduling involves high overhead, therefore jobs always ex-
ecute to completion, and cannot be preempted [16].

III. SCHEDULING, MIGRATION & STARVATION
STRATEGIES

A. Job Dispatching

The entry point of the system, as depicted in Fig.1, is the
DVM. Jobs with degrees of parallelism less than or equal to the
available VMs are dispatched immediately as long as none of
the conditions that will be described in section IV are met. For
the allocation of VMs to tasks, the DVM applies the Shortest
Queue First (SQF) algorithm which dispatches the tasks to
VMs with the shortest queues.
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B. Job Scheduling

Our model applies two of the most commonly used gang
scheduling algorithms. Both AFCFS and LJFS have been
extensively studied in the area of cluster computing.

1) Adaptive first come first serve: AFCFS tries to schedule
jobs whose tasks are in front of their respective queues every
time VMs become idle following a departure. If no such job
exists, AFCFS tries to schedule jobs that are further down
their queues. Because of this way of scheduling AFCFS tends
to favor smaller jobs that are easier to schedule and often
increases the waiting times of larger jobs.

2) Largest job first served: LJFS on the other hand, gives
priority to larger jobs. In every scheduling cycle, LJFS tries
to schedule the largest job whose tasks are allocated to idle
VMs. This method improves the response time for larger
jobs significantly by giving them priority. Also, since larger
jobs often leave large enough numbers of VMs free when
scheduled, smaller jobs suffer a smaller increase in waiting
times in comparison to larger jobs under AFCFS.

C. Job Migration

A common problem that arises in the use of gang scheduling
is that, frequently, processors may remain idle while there
are waiting tasks in their queues [1]. The implementation of
migrations is necessary in order to avoid such fragmentation
[17], [18]. The migration process involves the transferring of
tasks from the queues of busy VMs to the heads of queues of
idle VMs when those are available. Though this process does
solve the fragmentation issue mentioned above, it may also
incur large overheads to the system [19].

Our system implements certain safeguards to the application
of migrations in order to reduce overhead. First of all, migra-
tions are allowed only when the system cannot schedule jobs
through the normal route. When that happens the migration
system tries to find if there are any jobs that can fit the free
VMs. If such jobs exist, the system applies one of the two
fitting policies depending on how the simulation is configured
in order to select which job to migrate:

1) First Fit – The first job, from those that fit, is selected.
This method is easier to implement and produces less
overhead on average.

2) Best Fit – The best fitting job, that is the job with
the highest degree of parallelism that fits the free VMs,
is selected. This method causes more overhead since it
needs to search every job in order to find the best fitting
job.

Also for the purposes of this work a migrations monitor,
which allows jobs to migrate only every Sn = 10 normal
job schedulings, has been included to further reduce total
migrations.

When the migration process finishes, the migrated job is
scheduled for execution in the next scheduling cycle. This
happens in order to prevent multiple migrations of the same
job, which would introduce more overhead for no reason.

D. Starvation Handling

A reservation system that includes a prioritized queue has
been implemented in order to deal with starvation. Normal
scheduling of jobs and migrations are paused while this
queue contains “starved” jobs. Jobs are considered starved
when the eXpansion Factor (Xfactor) breaches the “starvation
threshold” [20]. The expansion factor is calculated as follows:

Xfactor =
(IWTj + ej)

ej
(2)

Where IWTj and ej is the instant waiting time, that is the
waiting time up to that point, and execution time of job j
respectively.

The selection of the Xfactor plays an important role in the
handling of starved jobs. Moreover, in our model starved jobs
can migrate, without being bounded by the above mentioned
monitor, therefore the starvation system can lead to a surge in
the number of migrations if the Xfactor selected permits so.

IV. VIRTUAL MACHINE HANDLING

The Cloud provides users the ability to up-scale or down-
scale their available computing resources by requesting more
VM instances or by releasing them. This procedure involves
a delay, which is derived from the time that the VM setup
process will take to create a stated number of VMs. This
delay usually is less than 10 minutes per request [14], [21].
In our simulation model these delays were random numbers
following a continuous uniform U(0, 0.2) distribution with a
mean of 0.1, which is comparable to the one-tenth of the
mean service time of job tasks (1/µ) which was 1 for our
experiments.

A. Virtual Machine Provisioning

A complex system has been implemented for the addition
and removal of VMs from the system. Leasing happens if one
of the following conditions is met:

• Inadequate VMs, This happens when a job with more
tasks than available VMs arrives. The job is queued at
the DVM until new VMs are provisioned.

• Overloaded VMs, At every dispatch the system checks
the state of the waiting queues of the VMs and computes
the Average Load Factor which is equal to:

ALF =

∑Pl

i=1 ti
Pl

(3)

Where ti is the number of tasks currently waiting at VM
i and Pl is the number of VMs leased by the system at
that moment.
Should the ALF surpass a pre-specified load threshold,
the system provisions for new VMs equal to the number
of tasks of the arriving job and puts it on hold in the
DVM queue until such VMs are available.

In any of the above two cases, the system will not try to
lease more than the previously mentioned limit VMmax. Also
after each provision the release mechanism gets paused for 10
arrival cycles in order for new VM queues to fill up.
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B. Virtual Machine Releasing

The system may also release VMs under certain circum-
stances when they are not needed. This operation is particu-
larly important as it affects the cost efficiency of the system.
The criteria that deem a VM as releasable are the following:

• The VM is idle and has an empty waiting queue.
• There are no rescheduled jobs in the DVMs queue.
• No migrations are actively scheduled.

All of the above criteria must be met for a VM to be released.

V. PERFORMANCE & COST EVALUATION

This study focuses both in the evaluation of the performance
of the system described in detail above and its cost efficiency.

A. Performance Metrics

The following metrics where employed in the evaluation of
performance:

• Response Time rj , of a job j is the time interval between
the arrival and the departure of the job. Its average is
defined as:

RT =

∑N
j=1 rj

N
(4)

Where N is the total number of jobs.
• Slowdown sj , defined as sj = rj/ej , is a metric that

compares the delay suffered by a job relative to its service
time ej . Since this metric can be easily affected by very
small service times in the denominator we apply the
following bounded metric [22]:
Bounded Slowdown:

BSLD = max

{
rj

max {ej , τ}
, 1

}
(5)

For our experiments τ was set to 10−3

• Total number of migrations migtot, was also evaluated
between simulations since the number of migrations will
surely affect the overall performance of the system due
to the overhead caused.

B. Cost Metrics

Since the Cloud is cost-associative, the system has to
maintain a good analogy between response time and cost.
Therefore, we integrate total lease time (LT) of VMs with
average response time (RT) in the following metric called
Cost-Performance efficiency [13].

CPE = DLT +DRT (6)

Where DLT is the relative difference in LT between two
simulation experiments and DRT is the relative difference
between the response times. We must note here that AFCFS
was used as a basis for comparison and thus negative values
in CPE denote that AFCFS acts better than LJFS.

C. Simulation Parameters

The model described above was implemented using discrete
event simulation [23]. Each result represented here is the aver-
age of 30 differently instantiated replications of the simulation
experiment for each arrival rate (λ), each scheduling algorithm,
each migration algorithm and each job size coefficient. Each
simulation run was terminated upon completion of 100,000
jobs.

Three different job size coefficients where applied:
• q=0.25, with an AJS of 20.5 tasks per job on average.
• q=0.5, with an AJS of 16.5 tasks per job on average.
• q=0.75, with an AJS of 12.5 tasks per job on average.

These values where selected in order to study the effect of job
size on the performance of the system.

The complex structure of the system does not allow for
an easy selection of λ values. Through empirical study we
have selected values that lead to a system that is able to lease
and release VMs dynamically. For each job size coefficient
separate arrival rates where studied:

• For q = 0.25, λ = 1.75, 2.0, 2.25, 2.5
• For q = 0.5, λ = 2, 2.25, 2.5, 2.75
• For q = 0.75, λ = 2.5, 3.0, 3.5, 4.0

Also since the expansion factor plays an important role in
starvation handling as mentioned above we have tested two
separate values for it:

• Xfactor = 10
• Xfactor = 20

For every mean value, a 95% confidence interval was
evaluated. The half-widths of all confidence intervals were less
than 5% of their respective values.

D. Results

The results that follow depict the differentiation in per-
formance and cost between the two scheduling algorithms
under all different configurations. Response Time is counted
in theoretical Time Units (TUs) since the model was simulated
with discrete event simulation.

Fig.2a, Fig.2b depict the performance metrics described
above, notably RT and BSLD, for q = 0.25, q = 0.50
and q = 0.75 respectively. Each figure shows the results
for AFCFS and LJFS in conjunction with First Fit (FF) or
Best Fit (BF) and X factors. Fig.3 depicts the number of
migrations for each experiment in order to assess the overhead
due to migrations. Finally table I lists the Cost-to-Performance
Efficiency for all parameters.

1) Response Time: It is apparent that the migration system
along with starvation handling works very effectively and
maintains RT at low levels under low to medium arrival rates
notwithstanding the value of the job size coefficient q. Under
q = 0.25 and Xfactor = 20 in high arrival rates there
exists a significant difference in RT. In the same setup LJFS
in conjunction with BF offers moderately better results than
other combinations of algorithms but BF should be used with
caution due to the overhead involved.
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Fig. 2. Performance Metrics for q=0.25, q=0.50 and q=0.75

As we can see in Fig.3 for q = 0.25, Xfactor = 20
allows for significantly less migrations will being on par with
Xfactor = 10, in terms of response time, for low arrival
rates. In contrast when arrival rates get higher not only the
performance for the same Xfactor degrades a lot, but also the
number of migrations is about same as with Xfactor = 10.
On the other hand for q = 0.50 and q = 0.75, Xfactor = 20
manages to maintain a good average response time when
compared to Xfactor = 10 while providing up to 40% less
migrations. Thus it becomes obvious that a larger Xfactor

may be preferable when dealing with jobs with low to medium
parallelism while smaller X factors are better suited do deal
with highly parallel jobs even at large arrival rates.

2) Slowdown: Slowdown, as we mentioned above, is a
metric that can be easily affected by very small service times
and although our metrics are bounded the results can still vary
at times.

In Fig.2b the bounded slowdown metric displays a pretty
consistent behavior with some outliers, for q = 0.75 and
q = 0.50. These results show that the slowdown incurred
by the migration algorithms and starvation handling is at
comparable levels for job size coefficients that provide medium
to low parallelism jobs. In contrast results for q = 0.25 depict
higher levels of inconsistency in slowdowns. This can be
attributed to the way that migrations and starvation handling
functions that may, at times, leave jobs with small service
times in the waiting queues for longer periods than expected
and thus immediately affecting slowdown.

3) Cost-to-Performance Efficiency: In our previous work
[13], which did not include migrations or starvation handling,
we came to the conclusion that LJFS is more cost efficient
for higher arrival rates under all job size coefficients when
compared to AFCFS. Table I shows that these differences
almost disappear when migrations and starvation handling
comes into play. Different jobs size coefficients and expansion
factors seem to have a very small effect, and while the negative
values depict that AFCFS is better the difference is practically
negligible.

VI. CONCLUSION

This study, has integrated two important features, job mi-
grations and starvation handling into our previous model [13].
The resulting model was examined through simulation under
various workloads, job sizes, migration and starvation handling
schemes. Multiple metrics were applied in order to assess
both the performance and the cost of the system under all
configurations.

The application of migrations and starvation handling had a
significant effect on the previous model. Though migrations
have balanced the differences in response time their total
numbers play an important role in the performance of the
system and as such they provided a new basis for comparison.
Furthermore the differentiation in expansion factors proved
that fine tuning of such mechanisms is required in order to
achieve better results under different situations.

In the future we are looking forward to examine new
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Fig. 3. Number of Migrations for q=0.25, q=0.50 and q=0.75

TABLE I
COST-TO-PERFORMANCE EFFICIENCY TABLE

λ FF-10 BF-10 FF-20 BF-20

q = 0.25

1.75 -0.01754 0.01186 -0.05986 -0.05034

2.0 -0.05779 -0.02822 0.01578 -0.02924

2.25 -0.06002 -0.03257 -0.13544 -0.20242

2.5 -0.04291 -0.04251 -0.02578 -0.05216

q = 0.50

2.0 -0.01108 -0.00255 0.00425 -0.03946

2.25 -0.04043 0.00898 -0.04311 -0.04666

2.5 -0.05804 0.00752 -0.01717 -0.07711

2.75 -0.06253 -0.02212 -0.12085 -0.04923

q = 0.75

2.5 -0.03205 -0.03452 -0.00519 -0.03172

3.0 -0.04826 -0.02124 -0.05150 -0.07948

3.5 -0.02056 -0.01966 -0.06658 -0.03679

4.0 -0.02614 -0.04835 -0.08809 -0.07641

workload models better suited for Cloud computing. Also
the application of these mechanisms in systems with het-
erogeneous performance should be studied in depth if any
conclusions pertaining to a real Cloud system are to be drawn.
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