
Resource Allocation Strategies in a 2-level Hierarchical Grid System

Stylianos Zikos and Helen D. Karatza

Department of Informatics
Aristotle University of Thessaloniki

54124 Thessaloniki, Greece
{szikos, karatza}@ csd.auth.gr

Abstract

Efficient job scheduling in grids is challenging due
to the large number of distributed autonomous
resources. In this paper we study various resource
allocation policies in a 2-level grid system. A
simulation model is used to evaluate performance of
these policies at the grid level and at the local level.
Grid level policies include cases where the grid
scheduler uses site information (deferred policy), a
random policy, and a combination of the two (hybrid).
Simulation results indicate that the hybrid performs
better regardless of the local policy.

1. Introduction

In recent years, the trends in parallel processing
system design have changed. With the development of
Wide Area Networks, centralized supercomputers lose
ground to networked distributed systems which share
distributed resources in the grid. According to [1] a
grid is a system which coordinates resources that are
not subject to centralized control.

In computational grids, which are the most common
grid form, job scheduling is applied at two levels: grid
and local. At grid level, a grid scheduler selects the
appropriate systems for jobs, and at local level, local
schedulers allocate jobs to specific resources according
to a strategy. Grid and local schedulers constitute a
scheduling framework which can be centralized or
decentralized. The most common decentralized
architecture is the hierarchical architecture which
includes a grid scheduler, various distributed local
schedulers and many resources. With regard to grid
schedulers, a classification by centralized and
decentralized models can be made. In decentralized
models, grid schedulers cooperate to discover a
suitable system to serve a job.

A hierarchical architecture includes entities that
belong to different levels. For example, in [2] a generic
hierarchical tree model with four levels (grid, cluster,
site, computing elements) is presented. Hierarchical
job scheduling occurs at multiple levels. Hierarchical
scheduling strategies for grids are described in [3],
where 2-level scheduling strategies are presented. The
first level includes job and resource selection
strategies, and the second level includes local
scheduling strategies. In a hierarchical model, the grid
scheduler dispatches jobs to different sites, and the
local site schedulers further dispatch the jobs to
resources. To route a job to a site, the grid scheduler
can use site information for an effective site selection.
This information can be based on static or dynamic
characteristics of sites [4]. Static characteristics do not
change, for example, the number of processors.
Dynamic characteristics change over time, for
example, the length of local queues. Obtaining real-
time global information from sites is costly and leads
to high overhead [5]. This is because sites are
distributed geographically, and the number may be
large, and thus a large amount of communication
traffic is required. An improvement could be the use of
a fixed update interval [6]. In this case grid scheduler
receives dynamic site information only at specific
times. In [7], techniques that support efficient task
scheduling algorithms in real-time distributed systems
were studied, where deadline-based task scheduling
and resources allocation were considered jointly.

Previous relevant work includes scheduling in
distributed systems [8], [9] and multi-site scheduling
[10], where meta-scheduler’s decisions are based on
predicted load values via time-series analysis. The
focus of this paper is on various grid and local resource
allocation policies in a 2-level hierarchical grid system.
We also evaluate their performance under medium and
high workload with the use of the discrete event
simulation technique. We examine all the combinations
of grid and local policies that we study. Based on the
effectiveness evaluation of the use of site information

41st Annual Simulation Symposium

1080-241X	/08 $25.00 © 2008 IEEE
DOI 10.1109/ANSS-41.2008.8

157

41st Annual Simulation Symposium

1080-241X	/08 $25.00 © 2008 IEEE
DOI 10.1109/ANSS-41.2008.8

157

41st Annual Simulation Symposium

1080-241X	/08 $25.00 © 2008 IEEE
DOI 10.1109/ANSS-41.2008.8

157

41st Annual Simulation Symposium

1080-241X	/08 $25.00 © 2008 IEEE
DOI 10.1109/ANSS-41.2008.8

157

41st Annual Simulation Symposium

1080-241X	/08 $25.00 © 2008 IEEE
DOI 10.1109/ANSS-41.2008.8

157

by the grid scheduler, we propose a hybrid policy that
could reduce the overhead.

To our knowledge, the combination of grid and
local resource allocation policies that we study in a 2-
level grid and their effect in system’s performance
under our workload models does not appear elsewhere
in the research literature.

The rest of this paper is organized as follows. In
section 2 the model of the system, the scheduling
policies, and the metrics used for performance
evaluation are described. In section 3 the model’s input
parameters are outlined and the simulation results are
presented and analyzed. Finally, conclusions and
suggestions for further research are summarized in
section 4.

2. Model and methodology

2.1. System

A simulation model is used in this paper to study
the performance of resource allocation policies. An
open queuing network model of a hierarchical 2-level
grid system is considered (figure 1). It consists of four
sites that are connected through WAN. There is also
the Grid Scheduler (GS) that communicates with the
sites, so the model is centralized with regard to GS.
There is a job arrival stream at the GS (grid jobs) and
in that way jobs enter to the system. The GS’s task is to
dispatch jobs to sites. GS has its own queue, and thus it
has the ability to store jobs temporarily if needed. Each
site consists of eight processors and a Local Scheduler
(LS). A high-speed local network connects all these
units of a site. When a job departs from GS, it arrives
at the LS of the selected site. There is no queue at LS,
so the job is routed instantly to a processor according
to a policy. Each processor has its own queue, and a
job enters the queue if the processor is busy.

There are no job arrival streams inside the sites, and
therefore there are no jobs locally submitted (local
jobs). We consider that grid jobs are simple. This
means that they cannot be further divided into tasks
that can be executed in parallel. We also assume that
all jobs can be executed by all processors. The system
is homogeneous as all sites have the same number of
processors (eight) with the same processing capability
(contrary to heterogeneity that characterizes a grid in
practice).

The interarrival times of jobs are exponential
random variables with mean of 1/λ. Jobs service
demands are also exponential random variables with
mean of 1/µ (table 1).

Figure 1. System architecture (only two of the

four sites are shown in figure)

2.2. Policies

With the previously described architecture we made
simulation experiments with four different scheduling
policies on behalf of the GS and three different
scheduling policies on behalf of the LSs.

The GS allocates jobs to sites. The policy
determines the way a site is selected for a job. The aim
is to achieve a high degree of load balancing among
the sites.
Random GS (R_GS)

According to Random policy, when there is a job
arrival at GS, it randomly selects a site (the probability
is the same for all sites) and the job is routed to the LS
of this site. In this case, the GS’s queue is not used.
Deferred GS (D_GS)

The Deferred policy is based on dynamic site load
information that the GS receives. The load information
is sent to the GS by the LSs. This feedback process
occurs at a specified time interval (Allocation Interval).
Thus, when there is a job arrival, the GS stores it in the
queue and scheduling is deferred. The GS dispatches
all jobs in the queue at the end of each Allocation
Interval. For each job, the site with the minimum load
is selected. We define load as the total number of jobs
that exist in a site (the number of jobs in queues plus
the number jobs in service). The idea is to take
advantage of the feedback information to achieve more
efficient load balancing. The drawback is the delay in
the GS’s queue due to postponement of scheduling. In
[11] a deferred scheduling policy in cluster-based
servers is proposed. The dispatcher monitors the
servers’ queues and then routes a job to a server when
the number of jobs in the server’s queue drops below a
predefined threshold. However, in our work it is not
required to monitor continuously the load in each site.
Hybrid GS (H_GS)

The Hybrid policy is more composite, which
combines the two policies mentioned above, Random
and Deferred. There still exists the concept of
Allocation Interval in which the scheduling is deferred
until information from sites becomes available. The

158158158158158

problem with the Deferred policy is the long delay of
jobs that arrive at the beginning of the Allocation
Interval in GS. Perhaps it’s better to route these jobs to
a less “good” site with zero delay in the GS’s queue.
This is the case of Random policy. On the other hand,
jobs that arrive in shortly before the end of interval
benefit from the best site selection which compensates
the delay in queue. This is the Deferred policy part.
The question here is when the GS changes policy, from
Random to Deferred. A new parameter (A_I%) is
introduced which shows the percentage of Allocation
Interval in which the Random policy is used. If a job
arrives beyond the threshold that A_I% defines, then
the GS operates according to Deferred policy. The
optimal A_I% value under certain circumstances is
examined later in this paper. In figure 2 an example of
the GS operation is illustrated, where A_I% = 0.5,
implying that half of the time Random policy is used.

Figure 2. GS operation when Hybrid_GS policy

is used with A_I% = 0.5

Real-Time GS (R-T_GS)

Like Deferred policy, the Real-Time policy is based
on information about each site’s load. However, in this
case scheduling is not deferred and the GS has updated
load information at every job arrival. When a job
arrives, the GS allocates it to the least loaded site
without delay. This scenario is practically unachievable
as the overhead from the continuous feedback traffic
would be enormous. It’s impossible for the GS to know
exactly what’s happening to a large number of remote
sites. However, this Real-Time policy is used in this
paper for comparison purposes.

LSs allocate resources (processors) to incoming
jobs. The policy determines the way a processor is
selected for a job. We consider that each LS has the
ability to have up-to-date information about the load in
each processor compared to the GS, due to locality.
Random LS (R_LS)

According to this policy, each LS randomly selects
one of the eight processors to execute a job. The
selection probability is the same for all processors.
Shortest Queue LS (SQ_LS)

When the Shortest Queue policy is used, a LS uses
information about the number of jobs in each local
queue and selects the processor with the least number
of jobs waiting in queue. In case there are two empty
queues, the idle processor is selected. In case that

SQ_LS is used and the GS utilizes site information (it
depends on the specific GS policy employed), LSs
send the GS the number of free processors (with empty
queues) in addition to the number of jobs in site. GS
selects first the sites with empty queues and then
SQ_LS policy guarantees that the job will be allocated
to the idle processor. With this optimization, the GS
can exploit better the SQ_LS policy.
2 Random – Shortest Queue LS (2RSQ_LS)

The 2 Random – Shortest Queue policy is a two-
phase policy. Two random processors are selected
initially, and then the Shortest Queue policy between
these processors is applied. In [12], it is proven that
two choices, instead of one, offer exponential
improvement in a job’s response time in various
models that are examined.

We should note here that the FCFS scheduling
policy is applied for jobs waiting in queues, both at the
GS’s queue and at local queues. FCFS ensures certain
kind of fairness, does not require in advance
information about job execution time, does not require
much computational effort, and is easy to implement
[13], [14].

2.3. Performance metrics

Response time ri of a job i is the time period from
the arrival to the GS to the time service completion of
the job. Max response time is the maximum response
time of all jobs. The third main parameter is the
slowdown metric. Slowdown of a job is the job’s
response time divided by the job’s execution time. If ei
is the execution time of a job i, then the slowdown is
defined as follows:

si = ri / ei
Table 1 shows the parameters used in simulation
computations.

Table 1. Notations
P number of processors in system
λ mean arrival rate
1/λ mean inter-arrival time of jobs
µ mean service rate
1/µ mean service demand of jobs
A_I allocation interval
A_I% percentage of A_I (used by the

Hybrid GS policy)
U average processor utilization
RT average response time of jobs
max RT maximum RT
SLD average slowdown
DSLD relative decrease in SLD when

SQ_LS or 2RSQ_LS policy is
employed instead of the R_LS policy

159159159159159

Let m be the total number of processed jobs. The
following metrics used for performance evaluation are
defined as follows ([15], [8]):

 The average response time RT:

∑
=

×=
m

i
irm

RT
1

1

 The average slowdown SLD:

∑
=

×=
m

i
is

m
SLD

1

1

3. Simulation results and discussion

3.1. Input parameters

The model described above is implemented with
discrete event simulation [16]. Each simulation
experiment ends when 32000 jobs’ executions are
completed. Each result presented is the average value
that is derived from 10 simulation experiments with
different seeds of random numbers. In the given four
sites, there are totally 32 processors (P) and the mean
service demand of jobs is:

1/µ = 1.
If all processors are busy, 32 jobs can be served in one
time unit. This implies that we should choose a λ<32 to
maintain the system stability.

We study four cases for the mean job inter-arrival
time:

1/λ = 0.048, 0.043, 0.038, 0.033.
The mean arrival rates of jobs are respectively:

λ= 20.83, 23.26, 26.32, 30.3.
The following values for average system utilization are
derived theoretically from the chosen λ values.

U= 65.1 %, 73 %, 82.2 %, 94.7 %.

3.2 Performance evaluation and analysis

The simulation results to be presented next describe
performance of the three different LS scheduling
policies and the four different GS scheduling policies.
Notations of the policies are shown in table 2.

3.2.1. LS policies performance. Figure 3 shows that
for all arrival rates of jobs the Shortest Queue (SQ)
policy yields the lowest average response time, when
Random policy is used by GS. The highest average
response times are observed with R_LS policy, which
is predictable because each selection of a queue is

independent and does not take into account the
previous state. We also observe that the difference in
performance between R_LS and each of SQ_LS and
2RSQ_LS increases with increasing load. It is very
interesting to notice that 2RSQ_LS lies between those
two curves and is much closer to SQ. Similar results
are observed when the GS uses the Real-Time policy
(figure 4).

Table 2. Notations of the policies
Policy Notation
Random GS R_GS
Deferred GS D_GS
Hybrid GS H_GS
Real-Time GS R-T_GS
Random LS R_LS
Shortest Queue LS SQ_LS
2 Random - Shortest Queue LS 2RSQ_LS

Random GS

0

2

4

6

8

10

12

14

16

0,048 0,043 0,038 0,033

1/λ

RT

SQ_LS 2RSQ_LS R_LS
Figure 3. RT versus 1/λ when R_GS policy is

used

Real-Time GS

0

2

4

6

8

10

12

14

0,048 0,043 0,038 0,033

1/λ

RT

SQ_LS 2RSQ_LS R_LS
Figure 4. RT versus 1/λ when R-T_GS policy is

used

Figure 5 illustrates the relative decrease in SLD
when SQ_LS and 2RSQ_LS are employed instead of
the R_LS policy. SQ_LS method yields the highest
DSLD at all arrival rates. This is because SQ_LS
performs better than 2RSQ_LS, with lower RT at all
arrival rates as we saw above in figure 3. The same
behaviour appears in figure 6, where the Real-Time

160160160160160

method is used by the GS. In this case DSLD values are
higher, compared to the case where R_GS is used,
because of the more effective site selection by GS.
However, in both charts (figure 5 and figure 6), we see
that all DSLD values are above 60%, which shows the
superiority of the two policies (SQ_LS, 2RSQ_LS)
over R_LS.

From other simulation experiments that we have
conducted, when Deferred and Hybrid policy are
applied at GS, the relative performance of the three LS
policies does not change.

Random GS - DSLD

0

10

20

30

40

50

60

70

80

90

100

0,048 0,043 0,038 0,033

1/λ

%
 D

SL
D

SQ_LS 2RSQ_LS
Figure 5. DSLD(%) versus 1/λ when R_GS

policy is used

Real Time GS - DSLD

0

10

20

30

40

50

60

70

80

90

100

0,048 0,043 0,038 0,033

1/λ

%
 D

SL
D

SQ_LS 2RSQ_LS
Figure 6. DSLD(%) versus 1/λ when R-T_GS

policy is used

3.2.2. GS policies performance. Figures 7-9 show the
RT with regard to arrival rate when R_GS and R-T_GS
are used. In figure 7 the Random policy at LS (R_LS)
is applied, while in figure 8 and figure 9, the 2RSQ_LS
and the SQ_LS are applied, respectively. From these
three figures, we can observe that R-T_GS policy
performs better (lower RT) in all cases. The result is
expected as with R-T_GS, GS has knowledge about
each site’s load at every job arrival. However, we
should be reminded that R-T_GS policy can not be
implemented in practice and is used only for
comparison purpose. Another observation is that
regardless of the LS policy employed, the difference
between the two methods increases with increasing
load. It seems that the presence of a larger number of
jobs affects the R_GS in a larger degree than it affects

R-T_GS. This is because there is more efficient load
balancing among sites with R-T_GS policy. The
difference between the two GS policies is not the same
in the three figures; therefore it depends on the LS
policy. The use of more effective LS policies favors
the GS policy that selects a site based on load
information. If there is significant delay in local
queues, the benefit from non-probabilistic site selection
may not be exploited efficiently. This is the reason the
difference between the two policies increases
according to this scheme: R_LS → 2RSQ_LS →
SQ_LS, as shown in figures 7, 8 and 9, respectively.

Random LS

0

2

4

6

8

10

12

14

16

0,048 0,043 0,038 0,033

1/λ
R

T
R_GS R-T_GS

Figure 7. RT versus 1/λ when R_LS policy is
used

2 Random SQ LS

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0,048 0,043 0,038 0,033

1/λ

RT

R_GS R-T_GS
Figure 8. RT versus 1/λ when 2RSQ_LS policy

is used

Shortest Queue LS

0

0,5

1

1,5

2

2,5

3

3,5

0,048 0,043 0,038 0,033

1/λ

R
T

R_GS R-T_GS
Figure 9. RT versus 1/λ when SQ_LS policy is

used

161161161161161

Deferred GS policy as described in section 2 is
characterized by the Allocation Interval (A_I)
parameter. The value of this parameter significantly
affects the GS’s performance and the system’s
performance. A high A_I value increases the number
of jobs waiting in GS’s queue and their delay due to
scheduling deferment. On the other hand, a small A_I
value eliminates this problem but increases the
overhead as load information from sites is required
more frequently.

To compare the Deferred GS policy with the
Random, through simulation experiments, we found
values of A_I that result in RT with D_GS ≈ RT with
R_GS. These equivalence values are the smallest A_I
values for which RT D_GS ≥ RT R_GS. This means
that with any A_I that is smaller than equivalence A_I
value, D_GS performs better (providing that the arrival
rate and LS policy are the same). An example of how
the RT is affected with regard to Allocation Interval is
shown in figure 10, where the local scheduler’s policy
is SQ_LS and 1/λ= 0.033. For A_I below 1.2, D_GS
performs better than R_GS, and the difference
increases for R_GS at higher A_I values.

The results about equivalence A_I are shown in
tables 3 and 4. They include the three LS policies and
two job arrival rates, with the highest 1/λ=0.033 (table
3) and the lowest 1/λ=0.048 (table 4). As we can
observe in table 3, the equivalence A_I values are 1.2,
1.8, 2.5 when SQ_LS, 2RSQ_LS, R_LS are used,
respectively. When 1/λ=0.048 (table 4) the equivalence
A_I values are 0.3, 0.3, and 0.5, which are much
smaller. In this case, a 0.2 (or 0.4) interval is needed
for an effective D_GS policy. This means that a large
amount of communication overhead is incurred every
0.2 (or 0.4 for the third case) time units for scheduling
a small number of jobs. This is because there is
relatively little delay in local queues and a longer
interval in GS adds extra delay which does not exist
with the R_GS policy. Generally a long A_I is
desirable for Deferred policy to reduce the
communication overhead but with the minimum effect
in system’s performance.

From the two tables we can observe that
equivalence A_I is longer when R_LS is used as
compared to SQ_LS and 2RSQ_LS. An explanation is
that when R_LS is used the delay in local queues is
more significant and a little extra delay in GS is
acceptable for a more efficient site selection.

An interesting observation about max RT is that
with Deferred policy it is lower than with Random
policy, as we can see in the two tables. This is valid for
all LS methods and for both job arrival rates. The result
is important because the extreme worst case RT values
are reduced and the fairness among the jobs increases.
The delay of jobs in GS until the end of an Allocation

Interval gives the opportunity for the load inside sites
to be reduced as there are no new arrivals in the sites
awhile.

SQ_LS , 1/λ=0.033

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0,5 1 1,5 2

A_I

RT

D_GS R_GS
Figure 10. RT versus A_I when SQ_LS is used

and 1/λ=0.033

Table 3. R_GS versus D_GS (1/λ= 0.033)

Table 4. R_GS versus D_GS (1/λ= 0.048)

The proposed Hybrid GS (H_GS) policy schedules
jobs with both the Random and Deferred GS methods.
It uses the A_I% parameter which determines the
percentage of A_I time that Random policy is applied
instead of Deferred, as described earlier in this paper.
Simulation experiments were conducted to evaluate
how H_GS performs as compared to R_GS, D_GS and
R-T GS. For D_GS and H_GS the previous
equivalence intervals from “Random vs Deferred”
experiments were used. The results are presented in the
next six figures (11-16), where RT with regard to
Hybrid’s policy A_I% parameter is shown. The chosen
A_I% values are: [0, 0.2, 0.4, 0.6, 0.8, 1]. The Hybrid
policy with A_I% = 0 performs exactly like the
Deferred because all incoming jobs to GS stay in the
queue until load information becomes available. The
Hybrid policy performs exactly like the Random when
A_I% = 1, because none of the jobs are deferred in GS
(in this case A_I is meaningless).

In figures 11-13 the case where mean job inter-
arrival time is 0.048 is presented, and in each figure

162162162162162

one of the three LS policies is applied. In figures 14-16
the mean job interarrival time is 0.033 (high load). All
figures share certain common characteristics, which
are:

1) The RT of three GS policies (D_GS, R_GS
and R-T_GS) is constant because these
policies are not affected by the A_I%
parameter.

2) D_GS and R_GS are very close due to
selected A_I values for D_GS (in figure 12
they perform equally, see tables above)

Regarding Hybrid policy, it is obvious that it

performs better than D_GS and R_GS for every A_I%
between 0.2-0.8. This conclusion is valid for both the
0.048 and 0.033 mean inter-arrival times and for all LS
policies. Hybrid’s RT decreases with increasing A_I%
up to a threshold. After this threshold, RT increases to
reach the R_GS. This is due to the following: The
combination of Random and Deferred policies allows
the GS to benefit from the advantages of both methods:
1) The zero-delay in GS for jobs that would wait the
most time if only Deferred used, and 2) The selection
of the least loaded sites due to load information. In the
beginning the RT decreases with increasing A_I% as
Random policy is used more time and less jobs delay
in GS’s queue. When the A_I% threshold is reached
(lowest RT), RT increases with increasing A_I%,
because the scheduling is deferred for few jobs, and
only these jobs exploit load information from sites. As
we observe in figures 11-13, where 1/λ=0.048, the
lowest RT appears when 60% of the time Random
policy is applied by GS, regardless of LS method
(A_I% = 0.6). In figures 14-16, where 1/λ=0.033, the
lowest RT appears when A_I% = 0.8. At these A_I%
values, Hybrid performs close enough to our reference
policy R-T_GS. It is not possible for Hybrid to
outperform R-T_GS, as the last one assumes that for
every job the least loaded site is selected without any
delay.

A_I = 0.3 , 1/λ = 0.048 , SQ_LS

0,9

0,95

1

1,05

1,1

1,15

1,2

0 0,2 0,4 0,6 0,8 1

 A_I%

R
T

D_GS R_GS R-T_GS H_GS
Figure 11. RT versus A_I% when SQ_LS is

used and 1/λ=0.048

A_I = 0.3 , 1/λ = 0.048 , 2RSQ_LS

1,3

1,35

1,4

1,45

1,5

1,55

1,6

0 0,2 0,4 0,6 0,8 1

 A_I%

RT

D_GS R_GS R-T_GS H_GS
Figure 12. RT versus A_I% when 2RSQ_LS is

used and 1/λ=0.048

A_I = 0.5 , 1/λ = 0.048 , R_LS

2,45

2,5

2,55

2,6

2,65

2,7

2,75

2,8

2,85

2,9

0 0,2 0,4 0,6 0,8 1

A_I%

R
T

D_GS R_GS R-T_GS H_GS
Figure 13. RT versus A_I% when R_LS is used

and 1/λ=0.048

A_I = 1.2 , 1/λ = 0.033 , SQ_LS

0

0,5

1

1,5

2

2,5

3

3,5

0 0,2 0,4 0,6 0,8 1

A_I%

RT

D_GS R_GS R-T_GS H_GS
Figure 14. RT versus A_I% when SQ_LS is

used and 1/λ=0.033

A_I = 1.8 , 1/λ = 0.033 , 2RSQ_LS

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 0,2 0,4 0,6 0,8 1

A_I%

RT

D_GS R_GS R-T_GS H_GS
Figure 15. RT versus A_I% when 2RSQ_LS is

used and 1/λ=0.033

163163163163163

A_I = 2.5 , 1/λ = 0.033 , R_LS

12

12,5

13

13,5

14

14,5

15

0 0,2 0,4 0,6 0,8 1

A_I%

RT

D_GS R_GS R-T_GS H_GS
Figure 16. RT versus A_I% when R_LS is used

and 1/λ=0.033

4. Conclusions and further research

This paper studied the performance of four
scheduling policies at GS level (R_GS, D_GS, H_GS,
R-T_GS) and three scheduling policies at LS level
(R_LS, SQ_LS, 2RSQ_LS), in a two-level grid system.
Simulation results showed that at LS level, SQ_LS
performs best, as expected.

Grid Scheduler’s task is to route jobs to sites. R_GS
is the simplest policy but it is not effective at high
workload. D_GS uses load information to achieve
better load distribution, but compared to R_GS it is
effective only for high workload due to communication
overhead. The proposed H_GS is a combination of the
above mentioned two policies which yields a lower RT
regardless of the LS method used and the workload.
When the optimal R_GS to D_GS ratio is applied,
H_GS is approaching our reference R-T_GS policy in
performance.

This paper can be extended to the case where the
sites are heterogeneous. Heterogeneity, a main
characteristic of grids, could be implemented in the
model by adding or removing processors, so that sites
have different number of processors. In this case, some
changes must be done to GS policies presented in this
paper to manage heterogeneity, such as the form of
load information. Furthermore, the number of sites in
the system can be expanded.

5. References

1. I. Foster, “What is the Grid? A Three Point Checklist”,

GridToday, July 2002.
2. B. Yagoubi, Y. Slimani, “Dynamic Load Balancing

Strategy for Grid Computing”, Transactions on
Engineering, Computing and Technology, volume 13,
May 2006, pp. 260-265.

3. A. Tchernykh, J. M. Ramirez, A. Avetisyan, N.
Kuzjurin, D. Grushin, S. Zhuk, “Two Level Job-
Scheduling Strategies for a Computational Grid”, In
Parallel Processing and Applied Mathematics, Springer-
Verlag, 2006, pp. 774-781.

4. Y. Cardinale, H. Casanova, “An Evaluation of Job
Scheduling Strategies for Divisible Loads on Grid
Platforms”, In Proceedings of the High Performance
Computing & Simulation Conference, Bonn, Germany,
May 2006.

5. Y. Patel, J. Darlington, “Allocating QoS-Constrained
Workflow-Based Jobs in a Multi-cluster Grid Through
Queueing Theory Approach”, Parallel and Distributed
Processing and Applications, 4th International
Symposium, ISPA 2006, Springer-Verlang, 2006, pp.
499-510.

6. E. Caron, V. Garonne, A. Tsaregorodtsev, “Definition,
modelling, and simulation of a grid computing
scheduling system for high throughput computing”,
Future Generation Computer Systems, Elsevier, Volume
23, Issue 8, 2007, pp. 968-976.

7. Y. Chen, H. Huang, W.T. Tsai, "Scheduling Simulation
in a Distributed Wireless Embedded System",
SIMULATION: Transactions of the Society for
Modeling and Simulation International, Vol. 81, Issue
6, June 2005, pp. 425-436.

8. H.D. Karatza, “Performance of Gang Scheduling
Policies in the Presence of Critical Sporadic Jobs in
Distributed Systems”, Proceedings of the International
Symposium on Performance Evaluation of Computer
and Telecommunication Systems-SPECTS 2007, San
Diego, CA, 2007, pp. 547-554.

9. H.D. Karatza, “Scheduling Gangs in a Distributed
System”, International Journal of Simulation: Systems,
Science Technology, UK Simulation Society, Vol. 7, no.
1, (January): 15-22, 2006.

10. M. Ioannidou, H. Karatza, “Multi-site Scheduling with
Multiple Job Reservations and Forecasting Methods”, In
Proceedings of International Symposium on Parallel and
Distributed Processing and Applications, volume 4330
of Lecture Notes in Computer Science, Springer, 2006,
pp. 894-903.

11. V. Ungureanu, B. Melamed, M. Katehakis, P.G.
Bradford, “Deferred Assignment Scheduling in Cluster-
Based Servers”, Springer Cluster Computing 9, 57-65,
2006.

12. M. Mitzenmacher, “On the Analysis of Randomized
Load Balancing Schemes”, Systems Research Center
Technical Note, February, 1998.

13. W. Zhang, C. Albert, M. Hu, “Multisite Co-allocation
Algorithms for Computational Grid”, In Proceedings of
the 3rd High-Performance Grid Computing Workshop
(HPGC 2006), Associated with the International Parallel
and Distributed Processing Symp. 2006 (IPDPS 2006),
IEEE Press, 2006.

14. U. Schwiegelshohn, R. Yahyapour, “Fairness in Parallel
Job Scheduling”, Journal of Scheduling, 3(5):297-320,
John Wiley, 2000.

15. A. Streit, “Enhancements to the Decision Process of the
Self-Tuning dynP Scheduler”, In Job Scheduling
Strategies for Parallel Processing book, volume 3277 of
Lecture Notes in Computer Science, Springer, May
2005, pp. 63-80.

16. Law, A., D. Kelton, 2006, Simulation Modelling and
Analysis, McGraw-Hill, New York, 1991.

164164164164164

