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Abstract 
 

Efficient job scheduling in grids is challenging due 
to the large number of distributed autonomous 
resources. In this paper we study various resource 
allocation policies in a 2-level grid system. A 
simulation model is used to evaluate performance of 
these policies at the grid level and at the local level. 
Grid level policies include cases where the grid 
scheduler uses site information (deferred policy), a 
random policy, and a combination of the two (hybrid). 
Simulation results indicate that the hybrid performs 
better regardless of the local policy. 
 
 
1. Introduction 
 

In recent years, the trends in parallel processing 
system design have changed. With the development of 
Wide Area Networks, centralized supercomputers lose 
ground to networked distributed systems which share 
distributed resources in the grid. According to [1] a 
grid is a system which coordinates resources that are 
not subject to centralized control.       

In computational grids, which are the most common 
grid form, job scheduling is applied at two levels: grid 
and local. At grid level, a grid scheduler selects the 
appropriate systems for jobs, and at local level, local 
schedulers allocate jobs to specific resources according 
to a strategy. Grid and local schedulers constitute a 
scheduling framework which can be centralized or 
decentralized. The most common decentralized 
architecture is the hierarchical architecture which 
includes a grid scheduler, various distributed local 
schedulers and many resources. With regard to grid 
schedulers, a classification by centralized and 
decentralized models can be made. In decentralized 
models, grid schedulers cooperate to discover a 
suitable system to serve a job. 

A hierarchical architecture includes entities that 
belong to different levels. For example, in [2] a generic 
hierarchical tree model with four levels (grid, cluster, 
site, computing elements) is presented. Hierarchical 
job scheduling occurs at multiple levels. Hierarchical 
scheduling strategies for grids are described in [3], 
where 2-level scheduling strategies are presented. The 
first level includes job and resource selection 
strategies, and the second level includes local 
scheduling strategies. In a hierarchical model, the grid 
scheduler dispatches jobs to different sites, and the 
local site schedulers further dispatch the jobs to 
resources. To route a job to a site, the grid scheduler 
can use site information for an effective site selection. 
This information can be based on static or dynamic 
characteristics of sites [4]. Static characteristics do not 
change, for example, the number of processors. 
Dynamic characteristics change over time, for 
example, the length of local queues. Obtaining real-
time global information from sites is costly and leads 
to high overhead [5]. This is because sites are 
distributed geographically, and the number may be 
large, and thus a large amount of communication 
traffic is required. An improvement could be the use of 
a fixed update interval [6]. In this case grid scheduler 
receives dynamic site information only at specific 
times. In [7], techniques that support efficient task 
scheduling algorithms in real-time distributed systems 
were studied, where deadline-based task scheduling 
and resources allocation were considered jointly.  

Previous relevant work includes scheduling in 
distributed systems [8], [9] and multi-site scheduling 
[10], where meta-scheduler’s decisions are based on 
predicted load values via time-series analysis. The 
focus of this paper is on various grid and local resource 
allocation policies in a 2-level hierarchical grid system. 
We also evaluate their performance under medium and 
high workload with the use of the discrete event 
simulation technique. We examine all the combinations 
of grid and local policies that we study. Based on the 
effectiveness evaluation of the use of site information 
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by the grid scheduler, we propose a hybrid policy that 
could reduce the overhead. 

To our knowledge, the combination of grid and 
local resource allocation policies that we study in a 2-
level grid and their effect in system’s performance 
under our workload models does not appear elsewhere 
in the research literature. 

The rest of this paper is organized as follows. In 
section 2 the model of the system, the scheduling 
policies, and the metrics used for performance 
evaluation are described. In section 3 the model’s input 
parameters are outlined and the simulation results are 
presented and analyzed. Finally, conclusions and 
suggestions for further research are summarized in 
section 4.  
 
2.  Model and methodology 
 
2.1. System 
 

A simulation model is used in this paper to study 
the performance of resource allocation policies. An 
open queuing network model of a hierarchical 2-level 
grid system is considered (figure 1). It consists of four 
sites that are connected through WAN. There is also 
the Grid Scheduler (GS) that communicates with the 
sites, so the model is centralized with regard to GS. 
There is a job arrival stream at the GS (grid jobs) and 
in that way jobs enter to the system. The GS’s task is to 
dispatch jobs to sites. GS has its own queue, and thus it 
has the ability to store jobs temporarily if needed. Each 
site consists of eight processors and a Local Scheduler 
(LS). A high-speed local network connects all these 
units of a site. When a job departs from GS, it arrives 
at the LS of the selected site. There is no queue at LS, 
so the job is routed instantly to a processor according 
to a policy. Each processor has its own queue, and a 
job enters the queue if the processor is busy.  

There are no job arrival streams inside the sites, and 
therefore there are no jobs locally submitted (local 
jobs). We consider that grid jobs are simple. This 
means that they cannot be further divided into tasks 
that can be executed in parallel. We also assume that 
all jobs can be executed by all processors. The system 
is homogeneous as all sites have the same number of 
processors (eight) with the same processing capability 
(contrary to heterogeneity that characterizes a grid in 
practice). 

The interarrival times of jobs are exponential 
random variables with mean of 1/λ. Jobs service 
demands are also exponential random variables with 
mean of 1/µ (table 1). 
 

 
Figure 1. System architecture (only two of the 

four sites are shown in figure) 
 
2.2. Policies 
 

With the previously described architecture we made 
simulation experiments with four different scheduling 
policies on behalf of the GS and three different 
scheduling policies on behalf of the LSs. 

The GS allocates jobs to sites. The policy 
determines the way a site is selected for a job. The aim 
is to achieve a high degree of load balancing among 
the sites.  
Random GS (R_GS) 

According to Random policy, when there is a job 
arrival at GS, it randomly selects a site (the probability 
is the same for all sites) and the job is routed to the LS 
of this site. In this case, the GS’s queue is not used.  
Deferred GS (D_GS) 

The Deferred policy is based on dynamic site load 
information that the GS receives. The load information 
is sent to the GS by the LSs. This feedback process 
occurs at a specified time interval (Allocation Interval). 
Thus, when there is a job arrival, the GS stores it in the 
queue and scheduling is deferred. The GS dispatches 
all jobs in the queue at the end of each Allocation 
Interval. For each job, the site with the minimum load 
is selected. We define load as the total number of jobs 
that exist in a site (the number of jobs in queues plus 
the number jobs in service). The idea is to take 
advantage of the feedback information to achieve more 
efficient load balancing. The drawback is the delay in 
the GS’s queue due to postponement of scheduling. In 
[11] a deferred scheduling policy in cluster-based 
servers is proposed. The dispatcher monitors the 
servers’ queues and then routes a job to a server when 
the number of jobs in the server’s queue drops below a 
predefined threshold. However, in our work it is not 
required to monitor continuously the load in each site. 
Hybrid GS (H_GS) 

The Hybrid policy is more composite, which 
combines the two policies mentioned above, Random 
and Deferred. There still exists the concept of 
Allocation Interval in which the scheduling is deferred 
until information from sites becomes available. The 
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problem with the Deferred policy is the long delay of 
jobs that arrive at the beginning of the Allocation 
Interval in GS. Perhaps it’s better to route these jobs to 
a less “good” site with zero delay in the GS’s queue. 
This is the case of Random policy. On the other hand, 
jobs that arrive in shortly before the end of interval 
benefit from the best site selection which compensates 
the delay in queue. This is the Deferred policy part. 
The question here is when the GS changes policy, from 
Random to Deferred. A new parameter (A_I%) is 
introduced which shows the percentage of Allocation 
Interval in which the Random policy is used. If a job 
arrives beyond the threshold that A_I% defines, then 
the GS operates according to Deferred policy. The 
optimal A_I% value under certain circumstances is 
examined later in this paper. In figure 2 an example of 
the GS operation is illustrated, where A_I% = 0.5, 
implying that half of the time Random policy is used. 
 

 
Figure 2. GS operation when Hybrid_GS policy 

is used with A_I% = 0.5 
 
Real-Time GS (R-T_GS) 

Like Deferred policy, the Real-Time policy is based 
on information about each site’s load. However, in this 
case scheduling is not deferred and the GS has updated 
load information at every job arrival. When a job 
arrives, the GS allocates it to the least loaded site 
without delay. This scenario is practically unachievable 
as the overhead from the continuous feedback traffic 
would be enormous. It’s impossible for the GS to know 
exactly what’s happening to a large number of remote 
sites. However, this Real-Time policy is used in this 
paper for comparison purposes. 

LSs allocate resources (processors) to incoming 
jobs. The policy determines the way a processor is 
selected for a job. We consider that each LS has the 
ability to have up-to-date information about the load in 
each processor compared to the GS, due to locality. 
Random LS (R_LS) 

According to this policy, each LS randomly selects 
one of the eight processors to execute a job. The 
selection probability is the same for all processors.  
Shortest Queue LS (SQ_LS) 

When the Shortest Queue policy is used, a LS uses 
information about the number of jobs in each local 
queue and selects the processor with the least number 
of jobs waiting in queue. In case there are two empty 
queues, the idle processor is selected. In case that 

SQ_LS is used and the GS utilizes site information (it 
depends on the specific GS policy employed), LSs 
send the GS the number of free processors (with empty 
queues) in addition to the number of jobs in site. GS 
selects first the sites with empty queues and then 
SQ_LS policy guarantees that the job will be allocated 
to the idle processor. With this optimization, the GS 
can exploit better the SQ_LS policy. 
2 Random – Shortest Queue LS (2RSQ_LS) 

The 2 Random – Shortest Queue policy is a two-
phase policy. Two random processors are selected 
initially, and then the Shortest Queue policy between 
these processors is applied. In [12], it is proven that 
two choices, instead of one, offer exponential 
improvement in a job’s response time in various 
models that are examined.  

We should note here that the FCFS scheduling 
policy is applied for jobs waiting in queues, both at the 
GS’s queue and at local queues. FCFS ensures certain 
kind of fairness, does not require in advance 
information about job execution time, does not require 
much computational effort, and is easy to implement 
[13], [14]. 
 
2.3. Performance metrics 
 

Response time ri of a job i is the time period from 
the arrival to the GS to the time service completion of 
the job. Max response time is the maximum response 
time of all jobs. The third main parameter is the 
slowdown metric. Slowdown of a job is the job’s 
response time divided by the job’s execution time. If ei 
is the execution time of a job i, then the slowdown is 
defined as follows: 

si = ri / ei 
Table 1 shows the parameters used in simulation 
computations. 

Table 1. Notations 
P number of processors in system 
λ mean arrival rate 
1/λ mean inter-arrival time of jobs 
µ mean service rate 
1/µ mean service demand of jobs  
A_I allocation interval 
A_I% percentage of A_I (used by the 

Hybrid GS policy)  
U average processor utilization 
RT average response time of jobs  
max RT maximum RT 
SLD average slowdown  
DSLD relative decrease in SLD when 

SQ_LS or 2RSQ_LS policy is 
employed instead of the R_LS policy 
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Let m be the total number of processed jobs. The 
following metrics used for performance evaluation are 
defined as follows ([15], [8]): 
 
 The average response time RT: 
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3. Simulation results and discussion 
 
3.1. Input parameters 
 

The model described above is implemented with 
discrete event simulation [16]. Each simulation 
experiment ends when 32000 jobs’ executions are 
completed. Each result presented is the average value 
that is derived from 10 simulation experiments with 
different seeds of random numbers. In the given four 
sites, there are totally 32 processors (P) and the mean 
service demand of jobs is: 
 

1/µ = 1. 
If all processors are busy, 32 jobs can be served in one 
time unit. This implies that we should choose a λ<32 to 
maintain the system stability. 

We study four cases for the mean job inter-arrival 
time:  

1/λ = 0.048, 0.043, 0.038, 0.033. 
The mean arrival rates of jobs are respectively:  

λ= 20.83, 23.26, 26.32, 30.3. 
The following values for average system utilization are 
derived theoretically from the chosen λ values. 

U= 65.1 %, 73 %, 82.2 %, 94.7 %. 
 
3.2 Performance evaluation and analysis 
 

The simulation results to be presented next describe 
performance of the three different LS scheduling 
policies and the four different GS scheduling policies. 
Notations of the policies are shown in table 2. 
 
3.2.1. LS policies performance. Figure 3 shows that 
for all arrival rates of jobs the Shortest Queue (SQ) 
policy yields the lowest average response time, when 
Random policy is used by GS. The highest average 
response times are observed with R_LS policy, which 
is predictable because each selection of a queue is 

independent and does not take into account the 
previous state. We also observe that the difference in 
performance between R_LS and each of SQ_LS and 
2RSQ_LS increases with increasing load. It is very 
interesting to notice that 2RSQ_LS lies between those 
two curves and is much closer to SQ. Similar results 
are observed when the GS uses the Real-Time policy 
(figure 4). 
 

Table 2. Notations of the policies 
Policy Notation 
Random GS R_GS 
Deferred GS D_GS 
Hybrid GS H_GS 
Real-Time GS R-T_GS 
Random LS R_LS 
Shortest Queue LS SQ_LS 
2 Random - Shortest Queue LS  2RSQ_LS 
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Figure 3. RT versus 1/λ when R_GS policy is 
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Figure 4. RT versus 1/λ when R-T_GS policy is 

used 
 

Figure 5 illustrates the relative decrease in SLD 
when SQ_LS and 2RSQ_LS are employed instead of 
the R_LS policy. SQ_LS method yields the highest 
DSLD at all arrival rates. This is because SQ_LS 
performs better than 2RSQ_LS, with lower RT at all 
arrival rates as we saw above in figure 3. The same 
behaviour appears in figure 6, where the Real-Time 
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method is used by the GS. In this case DSLD values are 
higher, compared to the case where R_GS is used, 
because of the more effective site selection by GS. 
However, in both charts (figure 5 and figure 6), we see 
that all DSLD values are above 60%, which shows the 
superiority of the two policies (SQ_LS, 2RSQ_LS) 
over R_LS. 

From other simulation experiments that we have 
conducted, when Deferred and Hybrid policy are 
applied at GS, the relative performance of the three LS 
policies does not change. 
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Figure 5. DSLD(%) versus 1/λ when R_GS 

policy is used 
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3.2.2. GS policies performance. Figures 7-9 show the 
RT with regard to arrival rate when R_GS and R-T_GS 
are used. In figure 7 the Random policy at LS (R_LS) 
is applied, while in figure 8 and figure 9, the 2RSQ_LS 
and the SQ_LS are applied, respectively. From these 
three figures, we can observe that R-T_GS policy 
performs better (lower RT) in all cases.  The result is 
expected as with R-T_GS, GS has knowledge about 
each site’s load at every job arrival. However, we 
should be reminded that R-T_GS policy can not be 
implemented in practice and is used only for 
comparison purpose. Another observation is that 
regardless of the LS policy employed, the difference 
between the two methods increases with increasing 
load. It seems that the presence of a larger number of 
jobs affects the R_GS in a larger degree than it affects 

R-T_GS. This is because there is more efficient load 
balancing among sites with R-T_GS policy. The 
difference between the two GS policies is not the same 
in the three figures; therefore it depends on the LS 
policy. The use of more effective LS policies favors 
the GS policy that selects a site based on load 
information. If there is significant delay in local 
queues, the benefit from non-probabilistic site selection 
may not be exploited efficiently. This is the reason the 
difference between the two policies increases 
according to this scheme: R_LS → 2RSQ_LS → 
SQ_LS, as shown in figures 7, 8 and 9, respectively. 
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Deferred GS policy as described in section 2 is 
characterized by the Allocation Interval (A_I) 
parameter. The value of this parameter significantly 
affects the GS’s performance and the system’s 
performance. A high A_I value increases the number 
of jobs waiting in GS’s queue and their delay due to 
scheduling deferment. On the other hand, a small A_I 
value eliminates this problem but increases the 
overhead as load information from sites is required 
more frequently. 

To compare the Deferred GS policy with the 
Random, through simulation experiments, we found 
values of A_I that result in RT with D_GS ≈  RT with 
R_GS. These equivalence values are the smallest A_I 
values for which RT D_GS ≥  RT R_GS. This means 
that with any A_I that is smaller than equivalence A_I 
value, D_GS performs better (providing that the arrival 
rate and LS policy are the same).  An example of how 
the RT is affected with regard to Allocation Interval is 
shown in figure 10, where the local scheduler’s policy 
is SQ_LS and 1/λ= 0.033. For A_I below 1.2, D_GS 
performs better than R_GS, and the difference 
increases for R_GS at higher A_I values.   

The results about equivalence A_I are shown in 
tables 3 and 4.  They include the three LS policies and 
two job arrival rates, with the highest 1/λ=0.033 (table 
3) and the lowest 1/λ=0.048 (table 4). As we can 
observe in table 3, the equivalence A_I values are 1.2, 
1.8, 2.5 when SQ_LS, 2RSQ_LS, R_LS are used, 
respectively. When 1/λ=0.048 (table 4) the equivalence 
A_I values are 0.3, 0.3, and 0.5, which are much 
smaller. In this case, a 0.2 (or 0.4) interval is needed 
for an effective D_GS policy. This means that a large 
amount of communication overhead is incurred every 
0.2 (or 0.4 for the third case) time units for scheduling 
a small number of jobs. This is because there is 
relatively little delay in local queues and a longer 
interval in GS adds extra delay which does not exist 
with the R_GS policy. Generally a long A_I is 
desirable for Deferred policy to reduce the 
communication overhead but with the minimum effect 
in system’s performance.     

From the two tables we can observe that 
equivalence A_I is longer when R_LS is used as 
compared to SQ_LS and 2RSQ_LS. An explanation is 
that when R_LS is used the delay in local queues is 
more significant and a little extra delay in GS is 
acceptable for a more efficient site selection.  

An interesting observation about max RT is that 
with Deferred policy it is lower than with Random 
policy, as we can see in the two tables. This is valid for 
all LS methods and for both job arrival rates. The result 
is important because the extreme worst case RT values 
are reduced and the fairness among the jobs increases.  
The delay of jobs in GS until the end of an Allocation 

Interval gives the opportunity for the load inside sites 
to be reduced as there are no new arrivals in the sites 
awhile. 
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Figure 10. RT versus A_I when SQ_LS is used 

and 1/λ=0.033 
 

Table 3. R_GS versus D_GS (1/λ= 0.033) 

 
 

Table 4. R_GS versus D_GS (1/λ= 0.048) 

 
 

The proposed Hybrid GS (H_GS) policy schedules 
jobs with both the Random and Deferred GS methods. 
It uses the A_I% parameter which determines the 
percentage of A_I time that Random policy is applied 
instead of Deferred, as described earlier in this paper. 
Simulation experiments were conducted to evaluate 
how H_GS performs as compared to R_GS, D_GS and 
R-T GS. For D_GS and H_GS the previous 
equivalence intervals from “Random vs Deferred” 
experiments were used. The results are presented in the 
next six figures (11-16), where RT with regard to 
Hybrid’s policy A_I% parameter is shown. The chosen 
A_I% values are: [0, 0.2, 0.4, 0.6, 0.8, 1]. The Hybrid 
policy with A_I% = 0 performs exactly like the 
Deferred because all incoming jobs to GS stay in the 
queue until load information becomes available. The 
Hybrid policy performs exactly like the Random when 
A_I% = 1, because none of the jobs are deferred in GS 
(in this case A_I is meaningless).     

In figures 11-13 the case where mean job inter-
arrival time is 0.048 is presented, and in each figure 
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one of the three LS policies is applied. In figures 14-16 
the mean job interarrival time is 0.033 (high load). All 
figures share certain common characteristics, which 
are: 

1) The RT of three GS policies (D_GS, R_GS 
and R-T_GS) is constant because these 
policies are not affected by the A_I% 
parameter. 

2) D_GS and R_GS are very close due to 
selected A_I values for D_GS (in figure 12 
they perform equally, see tables above) 

 
Regarding Hybrid policy, it is obvious that it 

performs better than D_GS and R_GS for every A_I% 
between 0.2-0.8. This conclusion is valid for both the 
0.048 and 0.033 mean inter-arrival times and for all LS 
policies. Hybrid’s RT decreases with increasing A_I% 
up to a threshold. After this threshold, RT increases to 
reach the R_GS. This is due to the following: The 
combination of Random and Deferred policies allows 
the GS to benefit from the advantages of both methods: 
1) The zero-delay in GS for jobs that would wait the 
most time if only Deferred used, and 2) The selection 
of the least loaded sites due to load information. In the 
beginning the RT decreases with increasing A_I% as 
Random policy is used more time and less jobs delay 
in GS’s queue. When the A_I% threshold is reached 
(lowest RT), RT increases with increasing A_I%, 
because the scheduling is deferred for few jobs, and 
only these jobs exploit load information from sites. As 
we observe in figures 11-13, where 1/λ=0.048, the 
lowest RT appears when 60% of the time Random 
policy is applied by GS, regardless of LS method 
(A_I% = 0.6). In figures 14-16, where 1/λ=0.033, the 
lowest RT appears when A_I% = 0.8. At these A_I% 
values, Hybrid performs close enough to our reference 
policy R-T_GS. It is not possible for Hybrid to 
outperform R-T_GS, as the last one assumes that for 
every job the least loaded site is selected without any 
delay.             
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A_I = 2.5 , 1/λ = 0.033 , R_LS
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Figure 16. RT versus A_I% when R_LS is used 

and 1/λ=0.033 
 
4. Conclusions and further research 
 

This paper studied the performance of four 
scheduling policies at GS level (R_GS, D_GS, H_GS, 
R-T_GS) and three scheduling policies at LS level 
(R_LS, SQ_LS, 2RSQ_LS), in a two-level grid system. 
Simulation results showed that at LS level, SQ_LS 
performs best, as expected. 

Grid Scheduler’s task is to route jobs to sites. R_GS 
is the simplest policy but it is not effective at high 
workload. D_GS uses load information to achieve 
better load distribution, but compared to R_GS it is 
effective only for high workload due to communication 
overhead. The proposed H_GS is a combination of the 
above mentioned two policies which yields a lower RT 
regardless of the LS method used and the workload. 
When the optimal R_GS to D_GS ratio is applied, 
H_GS is approaching our reference R-T_GS policy in 
performance.     

This paper can be extended to the case where the 
sites are heterogeneous. Heterogeneity, a main 
characteristic of grids, could be implemented in the 
model by adding or removing processors, so that sites 
have different number of processors. In this case, some 
changes must be done to GS policies presented in this 
paper to manage heterogeneity, such as the form of 
load information. Furthermore, the number of sites in 
the system can be expanded.  
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