
Optimized Dissemination of Highly Anticipated Content over

an Itinerary Based P2P Network

Konstantinos G. Zerfiridis

Department of Informatics

Aristotle University of Thessaloniki

54124 Thessaloniki, Greece

zerf@csd.auth.gr

Helen D. Karatza

Department of Informatics

Aristotle University of Thessaloniki

54124 Thessaloniki, Greece

karatza@csd.auth.gr

Abstract

 As the Internet evolved, peer-to-peer networks became
one of the major enabling technologies. Alternative

solutions for several issues emerged with the use o this

technology. Such is the case for the dissemination of large
files to several receivers. The traditional client-server

approach can not keep up with the rapidly increasing
requests of the users. P2P file sharing networks came as

an unconventional way of relieving the server from

becoming the congestion point. The purpose of this paper
is to show and analyze simulation results of an itinerary

based algorithm for the dissemination of a highly

anticipated file. Emphasis is given on several parameters
of the network and how they can affect its performance.

1. Introduction

 New applications that use the Internet in innovating

ways are appearing rapidly as broadband connections are

becoming widespread. More users are now able to be

constantly online through the use of inexpensive cable

and Digital Subscriber Line (DSL) connections. Along

with the benefits of having a faster connection to the net,

certain patterns started to emerge. Traditional hypertext

documents are giving way to rich media such as audio

and video. The traditional client-server paradigm does not

always come through when great amounts of data need to

be disseminated to numerous broadband-enabled

computers. Servers that publish highly anticipated files

can become congested in a short period of time [1].

Mirroring the content has long being used as a way to

alleviate the server from reaching its saturation point.

This approach however is not always able to cope with

the rapid traffic increase. This is especially the case when

large files need to be disseminated to numerous users.

Connection failures and retransmissions can add to the

creation of network bottlenecks.

 Perhaps the most commonly used P2P applications are

the file sharing networks [2]. Their popularity can be

attributed to their ease of use and high scalability. These

networks started out as a way to create a big pool of files

where anybody that participated had access to. However,

early P2P file sharing networks became victims of their

own success. Such networks were never designed for

large file dissemination. Along with the increasing

demand for rich media, another problem emerged. A

study conducted at the Xerox Palo Alto Research Center

showed that 70% of Gnutella users provided no files or

resources to the system and that 1% of the users were

providing half of the total system resources [3].

Nevertheless people turned to P2P file sharing networks

to find highly anticipated files, when the official server

stopped responding due to high demand. This created

network bottlenecks causing further inter domain

jamming.

 File sharing networks create in essence a common pool

of publicly accessible files. Each user defines which files

are to be shared. Centralized or decentralized search

mechanisms allow for the participating users to search

and retrieve a specific file. Files that are downloaded on a

user's computer are considered as shared files. Depending

on the algorithm used, these sharing networks can be

divided into two groups. The first group consists of

networks in which a file has to be downloaded completely

before a user is able to share it to other users. The

dissemination process of highly anticipated files on such

P2P networks has been studied earlier [4]. The second

group is comprised of a new breed of P2P applications.

These applications became popular as they follow a

different approach. In these networks, files are segmented

into several smaller packets, allowing them to be

distributed independently. This approach exploits a

simple, yet powerful principle: All the clients have to

contribute to the dissemination of the designated file,

alleviating this way problems raised in [3]. As soon as a

client starts downloading these packets, it starts offering

them to the network at large. That means that a large file

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

does not have to be downloaded in its entirety before it

can be offered to other clients.

 Extensive studies have been done about how file

sharing networks of the first group operate over time and

how they can be optimized [5, 6]. However, the

dissemination patterns and the way that certain network

parameters can affect the efficiency of the latter group

remain unexplored. In this paper an itinerary based P2P

dissemination network is introduced and a number of

simulation results of different dissemination scenarios are

presented in order to depict the network’s behavior under

a variety of conditions. Emphasis is given to the proposed

itinerary based approach for large file dissemination.

 The structure of this paper is as follows. Section 2

presents the structure of the proposed approach and shows

the simulation model that was used. In Section 3 the

simulation results are presented and analyzed, and finally

in section 4 the drawn conclusions are summarized, and

future research plans are presented.

2. The itinerary based network

 When a file needs to be downloaded by more clients

than the server can handle, alternative algorithms have to

be utilized. The naive way of avoiding retransmissions is

to pipeline the file through all the clients. But this is not a

viable solution because clients might have to indefinitely

wait to be served. In this paper an itinerary based

algorithm is used for file dissemination. This section

depicts the details of this approach and presents the

simulation model used.

 As the Internet evolved, it became a place where

anybody could easily make available to the public large

files such as demo versions of applications and games or

videos. Such releases are often followed by instant high

demand making most economical broadband connections

insufficient. Several P2P networks exist in which any

given file has to be downloaded completely by a client

before it can share the file to other peers. However, even

these networks are often proved inadequate to cope with

the high demand of popular large files at the beginning of

the dissemination process. That's because it can take a

long time before a sufficient number of users download

the complete file and stay online to assist the rest of the

users.

 Another approach to this problem is to have the file

segmented to several smaller parts and have them

replicated among the clients that requested the file. This

way, the clients can assist each other almost immediately.

As an additional benefit, all the users contribute to the

dissemination of the file, even if they go offline

immediately after they finish the download. This

approach is used by more recent P2P networks such as

eDonkey [7] and BitTorrent [8].

 In general, in such networks the server of a file, often

called seed, in addition to sending packets to the clients, it

maintains a list of the addresses of the clients that

requested the file. When a new client arrives in the

system, the server sends to the client this list. The client

then takes over and sends requests to peers in this list to

find those that are online and which packets each one has.

It then requests the packets from the clients and it only

refers to the server if it cannot find a packet anywhere

else.

 This approach is relatively straightforward, but it has

several shortcomings. The clients always have an

outdated list of peers. That is because the clients do not

have knowledge of the existence of a peer that contacted

the server for the first time after they did. Pulling the

server frequently in order to have an updated list is not a

viable solution as it would put additional load to the

server. Therefore, when a client is unable to find a packet

from any of the peers, it requests it from the server. This

can overwhelm the server with too many requests that

could have been avoided. Furthermore, a client arriving in

the network has to request a list from a server. This adds

to the server's heavy load and makes it a congestion point.

After this, the client has to iterate through the peers to

find one by one the appropriate packets in order to

replicate the file.

 These shortcomings have one common root. The

algorithm described above relies on flooding queries to all

peers and therefore it is in essence pull based. That is

because each client has to find by itself the necessary

packets that are scattered among the peers. Although

flooding is simple and robust, it is not scalable.

Additionally, no knowledge of which packets a peer

already has is used in order to offer this peer a packet that

it might not have. Furthermore, the server has no way of

controlling how a packet will be distributed among the

peers.

 In order to address several of the above mentioned

shortcomings, an itinerary based algorithm is proposed.

Mobile agents [9] are used as carriers of the packets and

additional information such as an itinerary [10] as

depicted in figure 1. Furthermore, each client maintains a

short list of peers, called database, in which the peers'

network addresses along with the last known set of

packets that they have are stored. This simple, yet

powerful approach is expected to overcome several

scalability issues.

 Departing mobile agents from the server disseminate

each packet to several destinations one-by-one.

Additionally, they interact with each client's database in

order to find which clients might need the packet that they

are carrying. If anyone is found, the mobile agent checks

if that peer is already part of its itinerary. If it is not, the

agent includes that peer as a destination. However, the

agents were set to have a maximum of 32 destinations.

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

The reason for that is because the itinerary has the

potential to grow indefinitely. The obvious drawback for

this is that the size of the itinerary can surpass the size of

the packet. Furthermore, when the list of destinations

grows beyond a certain point, the agent becomes useless.

That is because by the time that the agent reaches most of

the clients, they could have acquired that packet from

another source. In this simulation, the packet size was set

to be 1 Mbyte. In order to simulate dropped agents

because of network failures, the agents were set to be able

to visit 16 clients in average, using an upper bounded

exponential distribution.

 Each client, as depicted in figure 2, is comprised of

three main modules: a peer database, a receiving manager

and a sending manager. The peer database is responsible

for maintaining content information about a limited

number of peers. This database is periodically updated by

pulling from the peers their latest list of received packets.

In this simulation, the database was set to have a fixed

size of 10 entries, and the time between updates was set to

be 600 seconds. If during an update a peer is unreachable,

its entry is removed from the database. A peer could also

be removed from the database during the download

process. If for example the client queries a peer in the

database and the peer is unreachable, it will be removed.

If there is an empty entry in the database, the client tries

to find a new peer to be added. This is done by probing

for peers the itinerary of any incoming agent.

 An issue that arises is when a peer should be removed

from the database. If a client's database was set to have

the same peers throughout the entire time, the client

would reach a point when it will not be able to find new

packets from these peers. This issue was addressed by

periodically estimating the amount of time it could take

for the client to download all the available packets from

the peers that are currently on its database. After this time

elapses, the client iterates through the database to find the

least useful peer by comparing its own contents to each

peer's contents. The peer with the least amount of packets

that this client needs is chosen for removal. A new peer is

added when the next agent arrives, and the client

estimates when this refinement should take place again.

 This is not the case when the client has finished the

download. At that point, the client acts as a seed for the

given file. Therefore its main purpose should be to find

peers in need of any packets. Since there are no incoming

agents now, as the download has completed, new peers

are added when a request for a packet is made to the

client by an unknown peer. Again, the client estimates

how long it would take to disseminate the packets to all

the peers in the database that need them. After this time

elapses, the client tries to find a new peer to add in the

database and removes another if the database has reached

its maximum capacity.

 The receiving manager is mainly responsible for

accepting or declining incoming agents. The manager can

refuse the request of a remote agent to be transferred if

the agent carries a packet that already exists on this client.

In this case the agent moves on to its next destination.

Another reason for declining a remote transfer request

would be if the client doesn't currently have sufficient

download bandwidth. If this happens, the agent continues

with its itinerary and will retry to contact this peer later. If

an agent cannot go to any of the peers that remain in its

itinerary, it dies. An agent can also be lost if the

connection between two peers is lost. If only a fraction of

an agent is received, the client discards it. The receiving

manager has also the responsibility to forward an

incoming agent to the sending manager in order to

continue according to its itinerary to the next client.

Furthermore, the receiving manager monitors the client's

download bandwidth. If it determines that it can handle

the download of another agent simultaneously to the

agents that it downloads currently, or if it doesn't

download any agents at all, it refers to the database to find

and request packets from other peers. If the receiving

Packet N

Packet N-1

Packet N-2

Packet N-3

Packet 3

Packet 2

Packet 1

Packet N-11

Itinerary

Mobile Agent
Segmented File

Figure 1. File segmentation

FIFO agent queue

Database

Sending manager

Receiving manager

||||I||II||I||||I|||III|||

Segmented file

Figure 2. Client structure

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

manager cannot find any packets that it needs from the

peers in the database, it requests one packet from the

server. It should be noted here that when a client requests

a packet from the server, the packet is randomly chosen

from the list of packets that the client requires to complete

the transfer. Simulation results have shown that if the

packets were to be requested in any particular order, the

performance of the network would decrease dramatically.

That is because when all the clients request from the

server packets in a specific order, they end up requesting

the same packets. As a result, the clients in the network

would have the same packets and therefore no packet

replication among them would be possible.

 The main responsibility of the sending manager is to

utilize the upload bandwidth to the maximum. The

sending manager maintains a FIFO queue of up to 10

outgoing agents. The manager is able to upload several

agents to their destinations simultaneously in order to

utilize all of the available bandwidth. It is also able to

accept requests for a packet from another peer and create

a mobile agent as a carrier of that packet. If the queue is

full, remote requests for a packet are not accepted.

However, agents forwarded by the receiving manager are

always queued even if the queue has reached the given

limit. Before an agent departs from the client, it contacts

the database to find any additional peers that might need

the packet that it carries. If any peers are found, they are

added at the end of the agent's itinerary and the database

is updated to indicate that those peers have the given

packet. If the queue is empty, the sending manager

iterates through the database to find peers that might need

any packets. If two or more peers in the database need the

same packet, one agent is created with multiple

destinations.

 The server acts as a client that finished the download.

Clients refer to the server only on the beginning of the

dissemination and when they are not able to find a packet

from any of the peers in their database. Therefore it is

essential that the server accommodates all the requests.

However, it would not be possible to send all the packets

that the clients in the network request, as this would

overwhelm the server. On the other hand, in the proposed

P2P network, one agent carries sufficient information for

a new client to find other peers and begin the

downloading process. Therefore, if a client requests a

packet from the server, and the server's outgoing queue is

full, the client's address is added to the itinerary of the

first agent in the queue. This proved to have a dramatic

increase in the performance of the network, alleviating

along the way the server from maintaining a long queue.

 The used simulation model was based on an object-

oriented model of the network. The system was populated

with clients arriving according to the exponential

distribution. The simulation period was set to be 2 weeks

(1209600 seconds). During the first week the mean

interarrival time was incremented linearly from 5 to 20

sec in order to simulate demand on a highly anticipated

file. For the second week the exponential distribution was

used with 20 sec mean interarrival time. The file size was

set to be 500MB.

 All the clients that populated the system were set to

have broadband connections to the Internet, resembling

cable modems and DSL. This is done in order to use a

realistic model. As in many cases, such connections have

different download and upload speeds. Four different

categories of users were used. Their participation in the

population of the network and their upload and download

bandwidth is shown in table 1. This configuration is a

theoretical model, and is used to compare how the same

demand is handled using different network parameters.

 These kinds of clients are always online. However,

they are not expected to share the file forever. Therefore

they were set to leave the dissemination network with

exponential distribution and mean time of 10 hours

(36000 seconds). In order to simulate peers that are not

willing to assist in the dissemination process, 10% of the

clients were set to go offline immediately after they finish

downloading the file. It is likely that this will significantly

decrease the performance of the dissemination process.

Nevertheless it is a behavior that can be expected. The

server was set to have 1.5 Mbps download / 384 Kbps

upload connection (resembling a DSL user) to the net and

Table 1. Clients’ characteristics.

Groups Participation Download Upload

1 10 % 256 Kbps 256 Kbps

2 40 % 384 Kbps 128 Kbps

3 20 % 384 Kbps 384 Kbps

4 30 % 1.5 Mbps 384 Kbps

Figure 3. Network’s state over time

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 17 34 50 67 84
100 117 134 150 167 184 200 217 234 250 267 284 300 317 334

Time (hours)

C
li
e

n
ts

Served Online clients Served, online clients Arrivals

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

never to go off line. As the server is only uploading files,

the simulation would have given the same results if the

server had 384/384 connection to the net (third group).

The actual connection speed between two clients is

calculated at the beginning of each session, taking into

consideration the theoretical maximum speed they could

achieve and an exponentially distributed surcharge, in

order to simulate additional network traffic and sparse

bottlenecks.

3. Network parameters and simulation

results

 The network’s performance is evaluated at the

beginning (2 weeks) of the dissemination. As it can be

seen in figure 3, the curve of served clients in the itinerary

based approach follows closely the curve of the clients

arriving in the system. This shows that the itinerary based

approach can efficiently accommodate flash crowds. This

can be explained as the server and clients treat each file

segment individually. While the server is engaged by

serving a peer, the rest of the peers replicate among each

other the packets they already received. Having all the

clients assist in the process from the early beginning

proved to be a scalable system for large file

dissemination. Coupled with the fact that the itinerary

based approach uses prior knowledge of a peer's content

to push packets, the initial waiting time is decreased

significantly. Figure 4 shows the mean response time of

the clients according to their arrival in the system, in

6-hour intervals. As it can be seen, clients arriving in the

system after a certain period of time are accommodated

faster. That is because there is a sufficient number of

served clients that are online and serving other peers. On

the other hand, early on the dissemination process there

are not enough peers with packets to accommodate the

arriving clients. However, as it can be seen in figure 4,

clients that arrived at the beginning of the dissemination

were served faster than the clients that arrived a little bit

later. That can be explained as clients that arrived early

may benefit by having higher probability of being in the

server’s database. Each agent departing from the server

adds to its itinerary the clients in the server’s database

that need the packet that agent carries. Therefore, these

clients are served faster, assisting along the way the

clients in their own database. However, as more clients

arrive in the system, the flow of agent is distributed

throughout older and newer clients, increasing the mean

response time.

 Several issues arise about the performance of the

algorithm under a variety of network parameters. For

example, how can the size of the database affect the

dissemination process? Does the client’s sender FIFO

queue size play a significant role in the overall quality of

service? This section presents simulation results

concerning how such parameters can affect the network’s

performance. In order to evaluate the efficiency of the

algorithm in each case, a number of statistical

measurements were calculated.

3.1 Packet size

 The payload that each agent carries was set to be 1

MB. However, it would be interesting to see how the

system behaves when smaller or larger packet size is

used. Figure 5 shows that as the size of each packet get

smaller, the amount of served clients over time increases.

That’s because more agents are in the system over time.

Furthermore smaller agents can travel faster from one

client to the other. Therefore packets and crucial

information can be disseminated faster to new clients.

0

10000

20000

30000

40000

50000

60000

6 24 42 60 78 96
114

132
150

168
186

204
222

240
258

276
294

312

Time (hours)

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e

Figure 4. Mean response time in 12–hour intervals
according to each client’s arrival.

0

5000

10000

15000

20000

25000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 29 31 33 35 37 39 41 43 45 47

Time (hours)

C
li
e

n
ts

512kb 1MB 2MB

Figure 5. Served client over time, using different
packet sizes.

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

Another observation is that the first served clients appear

earlier when the packet size is smaller. That is because, as

the size of the packet is getting bigger, the mean response

time increases. This can be seen in figure 6 where the

mean response time is shown, for the 3 simulation runs, in

6-hour intervals, according to each client’s arrival. It

should be noted that the 1MB and 512KB approaches

seem to converge after a certain period of time. This

means that when the system reaches a point, the size of

the package can be increased without having a significant

effect on the process. Another benefit of having agent

carry smaller packets is that losing an agent has less

impact on the client’s performance. That’s because, a lost

agent is in essence wasted bandwidth and therefore, time.

As the agents’ payload is getting smaller, the amount of

lost time because of lost agents decreases and therefore

the performance of the network improves.

3.2 Database size

 As it was mentioned earlier, the itinerary based

approach uses a database in order to maintain information

about other peers. This database is frequently updated and

new peers are added. It is interesting to see how the

network’s performance changes when the size of this

database increases. The network was tested when a

database of 5, 10 and 20 entries was used. Table 2 shows

the mean response time and the mean time that a client

has to wait until it is served. The mean response time is

defined as the amount of time an arriving client spends

online until it finishes the download. It becomes apparent

that as the size of the database is getting larger the mean

response time is getting smaller. That’s because when a

client has a large enough database, it can instruct each

outgoing agent to visit more peers that are probably

missing the packet that the agent has. This increases the

overall performance of the network. A 20% decrease is

observed in the mean response time when 10 entries are

used instead of 5 for the database. This percentage drops

to 8.5% when 20 entries are used instead of 10. This

decrease is expected as the mean response time cannot

decrease linearly. In the best case the mean response time

can decrease asymptotically to the theoretical minimum

time that the file transfer can take place. However it

would not be sensible to have a very large database as the

maximum size of an agent’s itinerary is finite.

Furthermore, the cost of maintenance of a large database

could interfere with the client’s primary goal of retrieving

missing packets. The mean time that a client waits before

the first agent arrives is also decreased. A drop of about

6% is observed in each case. This drop can also be

Table 2. The affect of the database size on the
clients’ performance.

Database Size 5 10 20

Mean Response Time 44911 35814 32760

Mean Time Waiting 18444 17325 16189

Table 3. The affect of the database’s update
time intervals on the clients’ performance.

Database timeout

period (sec) 150 300 600

Mean Response Time 35239 35511 35814

Mean Time Waiting 17029 17174 17325

Figure 6. Mean response time in 6–hour intervals
according to each client’s arrival.

0

10000

20000

30000

40000

50000

60000

70000

80000

6 24 42 60 78 96 11
4

13
2

15
0

16
8

18
6

20
4

22
2

24
0

25
8

27
6

29
4

31
2

Tim e (Hours)

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

512k 1M 2M

0

10000

20000

30000

40000

50000

60000

6 24 42 60 78 96 11
4

13
2

15
0

16
8

18
6

20
4

22
2

24
0

25
8

27
6

29
4

31
2

Tim e (Hours)

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

queue=5 queue=10 queue=20

Figure 7. Mean response time in 6–hour intervals
according to each client’s arrival

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

attributed to the fact that as the database is getting larger,

more clients are expected to be visited by agents that

otherwise would not reach them.

3.3 Database update period

 As it was mentioned earlier, the database in each client

has a mechanism that periodically verifies the validity of

its entries. A predetermined amount of time is set as the

database’s timeout period. When this time elapses the

database checks to see if it contains a client that is no

longer online. If that’s true, this client is removed.

Otherwise, a new list of packet that each client has is

requested in order to update the database. It makes sense

that the benefit of having an updated database is great.

That’s because if a client has old information about a

peer, it might send a packet to that peer which was

already acquired. Furthermore, a client that doesn’t have

current information about the contents of the peers in its

database might not be able to find a packet that it needs.

Table 3 shows the mean response time and the mean time

that a client has to wait before the first agent arrives.

Three simulation runs are shown for 150, 300 and 600

seconds timeout period for the database. As expected, it

can be seen that both the mean response time and the

mean waiting time is increasing as the timeout period

increases. However, the increase in all cases is negligible

(less than 1%). That’s because the number of packets that

the initial file was segmented and the size of the database,

are sufficient to provide a client with enough resources

throughout the dissemination.

3.4 Queue size

 Each agent that arrives to a client has probably one or

more destinations to its itinerary. The sending manager

maintains a FIFO queue which acts as a buffer for the

outgoing agents. In order to utilize the outgoing

bandwidth to the maximum, this queue should be big

enough to always have an agent waiting to be send. That

way, when the sending manager estimates that there is

enough bandwidth to initiate another agent transfer, it can

find one in the sending queue. Additionally, as the

sending queues are getting bigger, the mean response time

should decrease. This is true as it can be seen in figure 7.

That’s because clients should be able to find service

easier and therefore being served faster. However, as

figure 8 shows, when using a smaller queue, the first

clients in the dissemination process are served faster.

That’s because the agents are not forced to wait in long

queues and are distributed faster. When more peers join

the network, longer queues are needed to accommodate

additional agents.

4. Conclusions and future work

 This paper addressed one fundamental challenge: the

optimization of delivering a large file to several rapidly

arriving clients. Coarse grain replication approaches for

large files dissemination is often used to accommodate

flash crowds efficiently. That is because the load can be

redistributed among the participating peers right from the

beginning of the dissemination. The presented itinerary

based approach used mobile agents with a dynamic

itinerary to deliver file segments to a number of clients.

This approach has all the characteristics of pipelining

along with the flexibility of a dynamic itinerary. Mobile

agents have been used in the past instead of protocols [11]

and for file transfer [12], but never as part of a P2P file

sharing network. Their ability to transport themselves on

different systems after being executed, carrying with them

their program code and current state of execution gives

them the unique capacity of living on a distributed

network. As they can operate asynchronously and

independently of the process that created them, they do

not need to report back to the server.

 The itinerary based approach presented in this paper

could be integrated as part of a P2P file transfer network.

It could also be used as an alternative to multicast for

large files with great demand, such as the release of a new

version of popular software as depicted in [1]. In such

cases, where a so-called flash crowd overloads servers or

networks and renders them useless, traditional ways of

making data available to the masses do not apply.

 As broadband-enabled computer users look to

download larger files, a new breed of P2P networks gains

popularity. An interesting simulation comparison would

be between other packet replication based P2P networks

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21

Tim e (hours)

S
e

rv
e

d
 c

li
e

n
ts

Queue = 5 Queue = 10 Queue = 20

Figure 8. Served clients over time

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

and the itinerary based algorithm proposed here.

Additional simulation experiments for the itinerary based

algorithm presented in this paper are under way, using

distributions varying with time for more realistic long run

simulations, as depicted in [13]. Furthermore, an

extension of the algorithm to incorporate synchronization

between the peers in predetermined time intervals is

under way. Two techniques are under consideration for

the agent synchronization. The first is called location

synchronization [14] and allows two or more agents to

coordinate the location of their execution at various times.

The second uses predetermined time intervals, called

Epochs [15]. The peers are segmented in virtual groups

according to their bandwidth and the synchronization time

interval depends on an estimation of the minimum

bandwidth between the peers that form each

dissemination group. Neighbor selection policies are also

examined. Simulation results from this network are

expected to show decrease of the mean waiting time after

critical mass is achieved.

5. References

[1] E. Schooler and J. Gemmell. “Using Multicast FEC to

solve the Midnight Madness Problem”. Technical Report,

Microsoft research. September 1997.

[2] M. Parameswaran, A. Susarla and A.B. Whinston. “P2P

Networking: An Information Sharing Alternative”. Computer

Journal, IEEE Computer Society. July 2001. Vol. 34, pp. 31-38.

[3] E. Adar and B. Huberman. “Free Riding on Gnutella”.

Technical report. Xerox Palo Alto Research Center. October

2000.

[4] K.G. Zerfiridis and H.D. Karatza. “Large Scale

Dissemination using a Peer-to-Peer Network”. In Proceedings of

the 3rd International Workshop on Global and Peer-to-Peer

Computing on Large Scale Distributed Systems, IEEE/ACM

International Symposium on Cluster Computing and the Grid

2003, Tokyo, Japan, 12-15 May 2003, pp. 421-427.

[5] E.P. Markatos. “Tracing a large-scale Peer to Peer System:

an hour in the life of Gnutella”. Proceedings of the CCGrid

2002, 2nd IEEE International Symposium on Cluster Computing

and the Grid. May 2002. pp. 65-74.

[6] Ripeanu M., I. Foster and A. Iamnitchi. “Mapping the

Gnutella Network: Properties of large-scale peer to peer systems

and implications for system design”. Internet Computing

Journal, IEEE Computer Society. January 2002. pp. 50-57.

[7] The Donkey Network. What is eDonkey. December 2003.

Available from: http://www.thedonkeynetwork.com

[8] BitTorrent. A tool for distributed download. December

2003. Available: http://bitconjurer.org/BitTorrent/

[9] D.M. Chess, C.G. Harrison, and A. Kershenbaum, “Mobile

Agents: Are They a Good Idea?”, Research report, IBM T.J.

Watson Research Center, Yorktown Heights, New York, March

1995.

[10] D.M. Chess, B. Grosof, C.G. Harrison, D. Levine, C. Parris

and G. Tsudik. “Itinerant Agents for Mobile Computing”.

Journal of Personal Communications. IEEE Computer Society.

October 1995. Vol. 2, No. 5, pp. 34-49.

[11] Joy B., “Shift from Protocols to Agents”, Internet

Computing, IEEE Computer Society, Vol. 4, No. 1, January

2000, pp.63-64.

[12] T. Spalink, J.H. Hartman and G. Gibson. “The Effects of a

Mobile Agent on File Service”. Proceedings of the First

International Symposium on Agent Systems and Applications,

Third International Symposium on Mobile Agents (ASA/MA

'99), Palm Springs, California, IEEE Computer Society. October

1999. pp. 42-49.

[13] H.D. Karatza “Task Scheduling Performance in Distributed

Systems with Time Varying Workload”, Neural, Parallel &

Scientific Computations, Dynamic Publishers, Atlanta.

September 2002, 10(3): 325-338.

[14] S. Mishra and P. Xie. “Interagent Communication and

Synchronization Support in the DaAgent Mobile Agent-Based

Computing System”. IEEE Transactions On Parallel And

Distributed Systems. March 2003. Vol. 14, No. 3, pp. 290-306.

[15] H.D. Karatza and R.C. Hilzer, “Epoch Load Sharing in a

Network of Workstations”. Proceedings of the 34th Annual

Simulation Symposium, IEEE Computer Society Press, SCS,

Seattle, Washington. April 22-26, 2001, pp. 36-42.

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

