

Large Scale Dissemination Using a Peer-to-Peer Network

Konstantinos G. Zerfiridis
Department of Informatics

Aristotle University of Thessaloniki, Greece
zerf@csd.auth.gr

Helen D. Karatza
Department of Informatics

Aristotle University of Thessaloniki, Greece
karatza@csd.auth.gr

Abstract

The widespread use of broadband networks and the
evolution of Peer-to-Peer systems changed dramatically
the way Internet is used today. P2P file sharing networks
are one of the most popular ways of sharing and
distributing new content. But along with the benefits of
these networks, certain patterns became apparent. It
could take a long period of time for new, highly
anticipated files to become available for download, due to
high demand. Therefore, the use of such networks as a
mean of file dissemination is not always successful,
especially when the files are of considerable size. In this
paper Peercast is presented, a P2P dissemination system,
along with simulation results. Our focus in this paper is
on how this and other P2P file sharing networks can be
configured to optimize the dissemination process of highly
anticipated files.

1. Introduction

As the average bandwidth capacity increases, users
around the world demand shorter response time. While the
servers are able to acquire more bandwidth, they can not
keep up with the rapidly increasing requests of the users.
When any file of considerable size has to be disseminated
to a numerous amount of receivers, the network can be
saturated quickly, clogging the host computer. Such is the
case, for example, when any highly anticipated software is
released and several people are trying to download it at the
same time. This became known as the middle night
madness problem [1] because that is the time new software
are made available, in order to avoid congestion.

As today's needs for data transfer steadily increase,
traditional ways of making data available to the masses
become obsolete. Conventional FTP servers can no longer
serve as a way of distributing large amounts of data. For
example, modern Linux distributions can span more than
one CD. Assuming that the server's bandwidth is 1
MBit/sec and the requested software is distributed in 2

ISO CD images, the server could only serve about 50
clients in a period of one week even in the theoretical case
that no errors occur. Mirroring the required content on
several dispersed servers, cannot always compensate for
the rapid traffic increase.

The main architecture used for casting data through the
Internet is IP multicast, which mainly targets real-time
non-reliable applications. It extends the IP architecture so
that packets travel only once on the same parts of a
network to reach multiple receivers. A transmitted packet
is replicated only if it needs to, on network routers along
the way to the receivers.

Although it has been considered as the foundation for
Internet distribution and it is available in most routers and
on most operating systems, IP multicast has not so far
lived up to early expectations. Its fundamental problem is
that it requires that all recipients receive the content at the
same time. The most popular solution to this problem was
to multicast the content multiple times until all of the
recipients obtain it. Some of the other drawbacks of IP
multicast include small address space (26-bit), need of
large routing tables and lack of congestion control and
reliable transfer control.

Several algorithms arise for membership management
and packet replication to solve problems such as server
implosion from client side NACKs (negative
acknowledgments), server explosion from maintaining
status of the download process for each client and
managing downloads requests by users connected with
different bandwidths. Forward Error Correction (FEC) has
long been used for the dissemination of static data as it
provides graceful degradation of performance in the
presence of packet losses. Its greatest disadvantage is that
it is very demanding on CPU and memory [2].

Although IP multicast might be considered ideal for
applications that require relatively high and constant
throughput but not much delay, it is not suitable for
applications that may tolerate significant delays but no
losses. This is the case with file distribution. These days, a
new way of disseminating files emerged. File sharing
networks [3] are perhaps the most commonly used

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 7, 2009 at 06:18 from IEEE Xplore. Restrictions apply.

Peer-To-Peer applications. P2P systems existed since the
birth of the Internet, but as bandwidth, computational
power and great storage capacity came to the masses, their
popularity increased. Such systems have been used for
diverse applications: combining the computational power
of thousands of computers, forming collaborative
communities, instant messaging, etc.

P2P file sharing networks' main purpose is to create a
common pool of files where everybody can search and
retrieve any shared files. But along with their popularity
several problems emerged. A study conducted at the
Xerox Palo Alto Research Center showed that 70% of
Gnutella users provided no files or resources to the system
and that 1% of the users were providing half of the total
system resources [4]. This created network bottlenecks
causing further inter-domain jamming.

File sharing networks had never been designed for file
dissemination. Nevertheless, people turn to them to find
highly anticipated software or even video files, when the
official server stops responding due to high demand.
Although extensive research has been done about how
existing P2P networks operate over time and how they can
be optimized [5, 6] the dissemination process of highly
anticipated files over such networks remains unexplored.
The purpose of this paper is to present Peercast, a network
that is designed to assist in file dissemination and to show
simulations and conclusions that could potentially benefit
existing P2P file sharing networks.

The structure of this paper is as follows. Section 2
introduces PeerCaster, the agent based platform used. In
section 3 the suggested approach is described. Section 4
shows the simulation model of the system. The results and
drawn conclusions are summarized in section 5 and
finally, section 6 presents suggestions for further research.

2. Background

Software agents are programs that act on behalf of
clients. They are able to perform predefined tasks that are
assigned to them. This is done either with or without the
supervision of the user, depending on the given job.

Mobile agents have an additional property [7]. The
ability to transport themselves on different systems after
being executed, carrying with them their program code,
current state of execution and any data which was
obtained. This gives them the unique capacity of living on
a distributed network rather than on a distant stationary
system, and to take advantage of the services that each
host has to offer locally. Furthermore, mobile agents allow
proprietary code to be used on the hosts, allowing
complete customization of the retrieved results. The
unique properties of the mobile agents give them the edge
in comparison to the traditional client-server paradigm.
The hosts implement a specified environment that can

authenticate the origin and credentials of the arriving
mobile agents, provide for them the necessary execution
machine and limit their access to system resources [8].

Mobile agents have been used in the past instead of
protocols [9], for file transfer [10] and as a dynamic
system for information discovery and retrieval [11]. There
are many applications that would benefit from the use of
mobile agents as a vehicle for getting around bottlenecks.
PeerCaster [12] is a platform implemented in Java that
uses mobile agents as a vehicle delivering great amount of
static data to users on a heterogeneous network. This is
done by splitting the data into small packets, loading them
onto mobile agents and releasing them to the peers where
the payload is delivered and continue according to their
itinerary. The coordination and communication overhead
is acceptable considering the scalability that can be gained
by the nature of the agent based system. As they can
operate asynchronously and independently of the process
that created them, they do not need to report back to the
server.

In this paper, PeerCaster was used as a mean of
distributing high-demand files without clogging the host
computer. This system could be integrated as part of a P2P
file transfer network, or it could be used as an alternative
to multicast for large files with great demand, such as the
release of a new version of popular software as depicted in
[1].

3. The Network

When a file needs to be downloaded by more clients
than the server can handle, alternative algorithms have to
be utilized. The naive way of avoiding retransmissions is
to pipeline the file through all the clients. But this is not a
viable solution because clients might have to indefinitely
wait to be served.

The proposed algorithm uses a dynamically changing
tree of clients (figure 1) in order to avoid uneven flow of
data and intersperse congestion points which can
compromise inter-domain quality of service. The server

Client
Queue List

Client
Queue List

Client
Queue List

Client
Queue List

Client
Queue List

Client
Queue List

Figure 1. The dissemination network

Server
List Queue

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 7, 2009 at 06:18 from IEEE Xplore. Restrictions apply.

can upload the file to a certain number of clients
simultaneously. When the server successfully uploads a
file to a client, it keeps a reference of this client to a short
(up to 100 entries) FIFO list. As new clients are served,
the list is enriched with newer clients and older clients are
removed in order to avoid server explosion. Although the
server has a small queue (of up to 10 clients), most of the
clients are expected to find this queue filled. This is the
case especially at the beginning of the dissemination
process, as clients arrive more rapidly than the server can
handle. When this happens, the server sends to the client
the list of clients that already downloaded the file. This
way, the new client can download the file from a client
that was already served, removing the congestion from the
server.

When a client finishes the download, it acts as a server
for other clients. Similarly to the server, the clients have a
short queue. If a client A requests the file from a client B
that has it, and that client B can not serve client A
immediately, A is queued. If the queue is full, client B
sends its own list of served clients (up to 20 entries) to
client A, so that it can continue searching. If a client is not
able to be served or queued, it retries after a certain period
of time to contact the server.

Several issues arise about the performance of this
algorithm in a heterogeneous network. For example, what
is the benefit of allowing several clients to download from
a single peer? It will reduce the average waiting time, but
what consequences will it have on the downloading speed
and in the long run on the total number of served clients?
How can the size of the queue in each client affect the
dissemination process?

4. Simulation model

In this section details are presented about the
simulation model for the proposed network, and it is
shown how different strategies might affect the
dissemination process. The system was populated with
clients arriving according to the exponential distribution.
The simulation period was set to be 2 weeks (1209600
seconds). During the first week the mean interarrival time
was incremented linearly from 5 to 20 sec in order to
simulate demand on a highly anticipated file. For the
second week the exponential distribution was used with 20
sec mean interarrival time. The file size was set to be
650MB (the size of a full CD).

All the clients that populated the system were set to
have broadband connections to the Internet, resembling
cable modems and DSL. This is done in order to use a
realistic model. As in many cases, such connections have
different download and upload speeds, four different
categories of users were used. The first category (10% of

the clients) had download and upload speed of 256 Kbps,
the second (40% of the clients) had 384 Kbps and 128
Kbps respectively, the third (20% of the clients) had 384
Kbps download and 384 Kbps upload speed, and the
fourth (30% of the clients) had 1.5 Mbps and 384 Kbps
respectively. This configuration is a theoretical model, and
is used to compare how the same network performs under
different conditions.

These kinds of clients are always on-line. However,
they are not expected to share the file for ever. Therefore
they were set to leave the dissemination network with
exponential distribution and mean time of four days.
Additionally, some clients are expected to refuse to share
the file. Therefore, 10% of the clients were set to leave the
dissemination network immediately after they download
the file.

The server was set to be a DSL user as well; having 1.5
Mbps download / 384 Kbps upload connection (fourth
category) to the net and never to going off-line. As the
server is only uploading files, the simulation would have
given the same results if the server had 384/384
connection to the net (third category). An additional
difference between the server and the clients is that the
server keeps a more extensive list (100 entries) of clients
that it served, whereas the clients have a relatively shorter
list (20 entries).

The actual connection speed between two clients is
calculated at the beginning of each session, taking into
consideration the theoretical maximum speed they could
achieve and an exponentially distributed surcharge, in
order to simulate additional network traffic and sparse
bottlenecks. If a new client cannot be served or queued
immediately, it waits for 600 seconds and retries.

Our focus is on how to use the server's and the clients'
resources in an optimum way to serve as many clients as
possible in a certain period of time. As it was mentioned
earlier, the behavior of this network can change
dramatically under certain conditions. The system’s
performance is investigated at the beginning (2 weeks) of
the dissemination, under different conditions.

When a client is serving only one peer at a time, the
mean response time is expected to decrease. But by not
allowing multiple uploads, the mean response time will
increase as new clients enter the system. On the other
hand, a client’s bandwidth is best utilized when serving
multiple peers simultaneously. This will definitely increase
the mean service time as the bandwidth of a serving client
will have to be shared among several peers. But in the
long run, more clients will be served within the same
period of time. In order to determine how the number of
simultaneous uploads can affect the system, four
simulations were carried out where 1, 2, 4 and 8 clients
respectively were served by each peer at a time.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 7, 2009 at 06:18 from IEEE Xplore. Restrictions apply.

Another parameter that could affect the dissemination
process is the size of each client’s queue. Shorter queues
can increase the mean response time. That’s because
arriving clients that find an available peer to be queued on,
will be served in a shorter amount of time if the queue is
smaller. But in that case, at the beginning of the
dissemination process most of the clients will not be able
to be queued on a peer. This will cause them to enter in
several timeout loops, leading to unfair treatment in some
cases (a client that arrives later being served first). Again
four tests were carried out, where the participating clients
had queue sizes equal to 1, 2, 4 and 8.

5. Results and conclusion

As it is shown in figure 2, the number of simultaneous
uploads affects significantly the population of the served
clients. More specifically, at the beginning of the
dissemination, using just one slot seems to speed up
significantly the creation of a critical mass of served
clients. The critical mass is the point where the rate of
served clients in the system starts to decline. That happens
when the rate of arriving and the rate of departing clients
balance out.

This can be explained because when serving just one
client at a time, all the bandwidth is dedicated to serve
faster that peer. As in theory the population of served
clients is expected to increase exponentially, it is of great
significance to have several served clients in the system as
soon as possible.

On the other hand, by using just one slot, a significant
percentage of bandwidth might go to waste. As figure 2
shows, serving 2 clients at once will not greatly diminish
the performance of the system. Nevertheless, it delays the
system from reaching the critical mass of clients. And in

the case that even slower clients (dial-up users) join in, the
clients would have to use more slots to utilize their full
bandwidth. Figure 3 shows that using more uploading
streams, increases the number of serving-clients needed to
reach the critical mass. That’s because using multiple
streams increase the mean response time at the beginning
of the dissemination. However, as more clients are served
simultaneously, the number of clients finishing the
download increases rapidly.

Additionally, figure 4 reveals that the size of the queue
plays a significant role, especially after the critical mass is
reached. At the beginning of the dissemination process,
the system behaves better as the queue size increases. But
when the number of clients reaches a certain point, the
system’s performance seems to decrease. On the other
hand, a smaller queue gives much better results in the long
run. This behavior occurs because when an adequate
number of served clients exist on the system, it is more
favorable for an arriving client to keep searching for a free
peer than to be queued on a long queue early on. As
shown in figure 5, the size of the queue does not affect
significantly the time period in which the balance occurs.
That’s because the bandwidth utilization cannot be
affected directly by the queue size.

In order to compensate for these shortcomings, the
Peercast system utilizes dynamically changing number of
slots and queue size for the clients. As a mean of keeping
track of the number of served agents, the server instructs a
small percentage (5%) of the arriving clients, to send back
a message when they finish downloading the file. This way
the server can estimate when the critical mass will be
reached. This information is then passed on to each
arriving client so that they know, without contacting the
server, when to increase the slot number and decrease the
queue size.

0

5000

10000

15000

20000

25000

1000
61000

121000

181000

241000

301000

361000

421000

481000

541000

601000

661000

721000

781000

841000

901000

961000

1021000

1081000

1141000

1201000

Tim e (sec)

O
n

-l
in

e,
 S

er
ve

d
 c

lie
n

ts

1 slot 2 slots 4 slots 8 slots

Figure 3. On-line clients that have been served,
under different number of simultaneous uploads

Figure 2. Number of served clients over time,
under different number of simultaneous uploads

0

10000

20000

30000

40000

50000

60000

1000
62000

123000

184000

245000

306000

367000

428000

489000

550000

611000

672000

733000

794000

855000

916000

977000

1038000

1099000

1160000

Time (sec)

S
er

ve
d

cl
ie

nt
s

1 slot 2 slots 4 slots 8 slots

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 7, 2009 at 06:18 from IEEE Xplore. Restrictions apply.

Additionally, in Peercast a client uses as many slots as
needed in order to utilize its full bandwidth, but it favors
the fastest peer by giving it all the bandwidth that it can
handle. This way clients use their full bandwidth and new
serving clients are created with faster rate. Although this
policy is proved to be unfair for slower clients, it can be
used as a way to build quickly a vast backbone tree of
clients at the beginning of the dissemination. When the
critical point is reached, the queue size drops from 8 to 2
entries, the slots become 4 and the peers are treated
equally. Using more slots significantly increases the mean
response time, as seen in table 1. A simulated
representation of the population of clients at any given
time in the first two weeks is depicted in figure 6.

Table 1 and table 2 show that the mean response time is
increased in all cases. That’s mainly because the clients

that arrive early on the dissemination process have to wait
for a long period of time to be served. When the rate of
arrivals balances with the rate of clients being served, the
mean response time stabilizes to lower levels. Therefore,
clients arriving later in the system benefit from a faster
service. This is depicted in figure 7.

Further simulation results, not shown here due to space
limitation, reveal that the size of the list of served peers
that each client has, does not significantly affect the
dissemination process. The same conclusion was reached
about the timeout period each client has to wait before
retrying to find a client to be queued on. However, the
time period in which the critical mass is reached is highly
depended on the mean interarrival time and the
heterogeneity of the clients. Therefore it can only be
estimated after an appropriate period of time.

Existing P2P file sharing networks cannot obviously be
rebuilt to optimize the dissemination of new files.

Table 1. Mean response time (queue=10)

 256/256 384/128 384/384 1.5/384
1 slot 221979 218498 216814 216232
2 slots 261779 249400 250301 227057
4 slots 387713 362996 363264 306762
8 slots 449403 415403 414127 334793

Table 2. Mean response time (slots=2)
 256/256 384/128 384/384 1.5/384

queue=1 215911 203957 203612 181570
queue=2 226016 214102 213228 192832
queue=4 239629 229174 230197 207302
queue=8 255650 242378 239816 216147

 Figure 6. Status of the client population over

time in the Peercast system

0

20000

40000

60000

80000

100
0

53
00

0

10
50

00

15
70

00

20
90

00

26
10

00

31
30

00

36
50

00

417
000

469
000

521
000

573
000

625
000

677
000

72
90

00

78
10

00

83
30

00

88
50

00

93
70

00

98
90

00

104
100

0

109
300

0

114
500

0

119
700

0

Tim e (sec)

N
u

m
b

er
 o

f
cl

ie
n

ts

Total served clients on-line clients served, on-line clients Arrivals

Figure 4. Number of served clients over time,
under different queue sizes

0

20000

40000

60000

320000

336000

352000

368000

384000

400000

416000

432000

448000

464000

480000

496000

512000

528000

544000

560000

576000

592000

608000

624000

640000

Time (sec)

S
e

rv
e

d
c

lie
nt

s

size=1 size=2 size=4 size=8

0

5000

10000

15000

20000

25000

30000

35000

1000
60000

119000

178000

237000

296000

355000

414000

473000

532000

591000

650000

709000

768000

827000

886000

945000

1004000

1063000

1122000

1181000

Tim e (sec)

O
n

-l
ie

n
e,

 s
er

ve
d

 c
lie

n
ts

size=1 size=2 size=4 size=8

Figure 5. On-line clients that have been served,
under different queue sizes

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 7, 2009 at 06:18 from IEEE Xplore. Restrictions apply.

However, some changes to the application level are
expected to increase their performance. For example, in
the Gnutella network, each application could perform a
search to determine which of the files that it currently
shares are unique or they are only found on limited
number of peers. By monitoring the search queries it can
resolve which of those files are most popular. In case a file
is found to be a “hot-spot”, priority over the bandwidth
should be given to any peer that requests it. If multiple
peers request it, it should be given to the one that shares
the largest number of files as this peer would most likely
share the file with other peers. Simulation results of this
scenario are pending.

6. Future Work

For the current P2P network implementation we used a
monolithic approach: all the data has to be sent to a client,
before this client starts sending it to another peer. The
PeerCaster platform is highly scalable because it was
implemented using mobile agents. A new version that
replicates groups of 256KB packets, to adjacent peers as
they arrive, is under way. This is expected to alleviate the
problems that are caused from peers that go off-line
immediately or soon after they finish downloading the
requested file. The synchronization between the peers is
done in predetermined time intervals, called epochs [13].
The peers are segmented in virtual groups according to
their bandwidth and the epoch size depends on an
estimation of the minimum bandwidth between the peers
that form each dissemination group. Simulation results
from this network are expected to show alleviation of
several issues raised in this paper such as the increased
mean response time at the beginning of the dissemination.
Additionally, distributions varying with time were
incorporated for more realistic long-run simulations, as

depicted in [14]. We are also working towards creating a
version that uses prior knowledge of a peer's content to
push newly arrived packets and utilize software FEC.

7. References

[1] E. Schooler, and J. Gemmell, “Using Multicast FEC to solve
the Midnight Madness Problem”, Technical Report, Microsoft
research, September 1997.

[2] L. Rizzo. “On the feasibility of software FEC”, Technical
report, Univ. di Pisa, Italy, January 1997.

[3] M. Parameswaran, A. Susarla, and A.B. Whinston, “P2P
Networking: An Information Sharing Alternative”, Computer
Journal, IEEE Computer Society, Vol. 34, July 2001, pp. 31-38.

[4] E. Adar, and B.A. Huberman, “Free Riding on Gnutella”,
Technical report, Xerox Palo Alto Research Center, 10 August
2000.

[5] E.P. Markatos, “Tracing a large-scale Peer to Peer System:
an hour in the life of Gnutella”, In the Proceedings of the
CCGrid 2002, Second IEEE/ACM International Symposium on
Cluster Computing and the Grid, May 2002, pp. 65-74.

[6] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the
Gnutella Network: Properties of large-scale peer-to-peer systems
and implications for system design”, Internet Computing
Journal, IEEE Computer Society, January 2002, pp. 50-57

[7] D.M. Chess, B. Grosof, C.G. Harrison, D. Levine, C. Parris,
and G. Tsudik, “Itinerant Agents for Mobile Computing”,
Journal of Personal Communications, IEEE Computer Society,
Vol. 2, No. 5, October 1995, pp. 34-49.

[8] D.M. Chess, C.G. Harrison, and A. Kershenbaum, “Mobile
Agents: Are They a Good Idea?”, Research report, IBM T.J.
Watson Research Center, Yorktown Heights, New York, March
1995.

[9] B. Joy, “Shift from Protocols to Agents”, Internet
Computing, IEEE Computer Society, Vol. 4, No. 1, January
2000, pp.63-64.

[10] T. Spalink, J.H. Hartman, and G. Gibson, “The Effects of a
Mobile Agent on File Service”, In the Proceedings of the First
International Symposium on Agent Systems and Applications,
Third International Symposium on Mobile Agents (ASA/MA
'99), Palm Springs, California, IEEE Computer Society, October
1999, pp. 42-49.

[11] K.G. Zerfiridis, and H.D. Karatza, "Brute Force Web
Search for Wireless Devices Using Mobile Agents", to appear in
the Journal of Systems and Software, January 2004, Elsevier.

[12] K.G. Zerfiridis, and H.D. Karatza, "Mobile Agents as a
Middleware for Data Dissemination", Neural, Parallel &

Figure 7. Mean response time of clients that
arrived in each time period (12 hours)

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

450.000

12 36 60 84 108 132 156 180 204 228 252 276 300
Hours in simulation

M
ea

n
 r

es
p

o
n

se
 t

im
e

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 7, 2009 at 06:18 from IEEE Xplore. Restrictions apply.

Scientific Computations, Dynamic Publishers, Atlanta, Vol. 10,
2002, pp. 313-323.

[13] H.D. Karatza, and R.C. Hilzer, "Epoch Load Sharing in a
Network of Workstations", Proceedings of the 34th Annual
Simulation Symposium, IEEE Computer Society Press, SCS,
Seattle, Washington, April 22-26, 2001, pp. 36-42.

[14] H.D. Karatza, “Task Scheduling Performance in Distributed
Systems with Time Varying Workload”, Neural, Parallel &
Scientific Computations, Dynamic Publishers, Atlanta, Vol. 10,
2002, pp. 325-338.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 7, 2009 at 06:18 from IEEE Xplore. Restrictions apply.

