
Dissemination Scenarios in Peer-to-Peer Networks

Konstantinos G. Zerfiridis
Department of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

zerf@csd.auth.gr

Helen D. Karatza
Department of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

zerf@csd.auth.gr

Abstract

 As the average bandwidth capacity is increasing, users
around the world demand for shorter service time. While
the servers are able to acquire more bandwidth, they can
not keep up with the rapidly increasing requests of the
users. Several systems appeared that alleviate the server
from the dissemination process. The evolution of Peer-to-
Peer systems gave a new way of attacking this problem.
But as they got increasingly widespread, certain patterns
became apparent. Uneven flow of data and intersperse
congestion points compromised interdomain quality of
service. In this paper we demonstrate how traditional
systems meet users’ demands, and present simulation
results of a peer-to-peer approach based on a mobile
agent platform. Our focus is on using the server’s and the
clients’ resources in an optimum way to serve as many
clients as possible in a certain period of time.

1 Introduction

 When any sizable data has to be disseminated to a
numerous amount of receivers, the network can be
saturated quickly, clogging the host computer. Such is the
case for example when any highly anticipated software is
released and several people are trying to download it at
the same time. This became known as the middle night
madness problem [1], as that’s the time new software are
made available, in order to avoid congestion.
 As today’s needs for data transfer steadily increases,
traditional ways of making data available to the masses
become obsolete. Conventional HTTP and FTP servers
can no longer serve as a way of distributing large amounts
of data. That’s because, in the case that no failures occur,
the sum of the served clients could theoretically reach:

N = (Server_Bandwidth) * (Total_Time) / (File_Size)

 Mirroring the required content on several disperse
servers, doesn’t always compensate for the rapid traffic

increase, because for example modern Linux distributions
can span more than one CD. Assuming for example that
the server’s bandwidth is 1 MBit/sec and the requested
software is distributed in 2 ISO CD images, the server
could only serve about 50 clients in a period of one week.
 The main architectural used for casting data through
the Internet is IP multicast, which mainly targets realtime
non-reliable applications. Although it has been considered
as the foundation for internet distribution and it is
available in most routers and on most operating systems,
IP multicast has not so far lived up to early expectations.
Its fundamental problem is that it requires that all
recipients receive the content at the same time. The most
popular solution to this problem was to multicast the
content multiple times until all recipients receive it. Some
of the other drawbacks of IP multicast include small
address space (26-bit), need of large routing tables and
lack of congestion control and reliable transfer control.
 Several algorithms arise for membership management
and packet replication to solve problems such as server
implosion from client side NACKs (negative
acknowledgments), server explosion from keeping status
of the download process for each client and managing
downloads requests by users connected with different
bandwidths. Forward Error Correction (FEC) has long
being used for the dissemination of static data as it
provides graceful degradation of performance in the
presence of packet losses. It is based on (n,k) erasure code
which encodes k source data packets into n encoded data
packets, where n>k. The encoding guaranties that any
given k of the n encoded packets are enough to
reconstruct the k source data packets. FEC has been used
in many multicast scenarios such as Filecast [1] and
SwarmCast. Its greatest disadvantage is that it is very
demanding on CPU and memory [2].
 Although IP multicast might be considered ideal for
applications that require relatively high and constant
throughput but not much delay, it is not suitable for
applications that may tolerate significant delays but no
loss. This is the case with file distribution. These days, a
new way of disseminating files emerged. File sharing
networks [3] are perhaps the most commonly used Peer-

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:14 from IEEE Xplore. Restrictions apply.

To-Peer application. P2P systems existed since the birth
of the Internet, but as bandwidth, computational power
and great storage capacity came to the masses, their
popularity increased. Such systems have been used for
diverse applications: combining the computational power
of thousands of computers, forming collaborative
communities, instant messaging, etc.
 P2P file sharing networks’ main purpose is to create a
common pool of files where everybody can search and
retrieve any shared files. But along with their popularity
several problems emerged. Xerox Palo Alto Research
Center showed that 70% of Gnutella users provided no
files or resources to the system and that 1% of the users
were providing half of the total system resources [4]. This
created network bottlenecks causing farther interdomain
jamming.
 File sharing networks had never been designed for file
dissemination. Nevertheless people turn to them to find
highly anticipated software or even video file, when the
official server stops responding due to high demand.
Although extensive research has been done about how
existing P2P networks operate over time and how they
can be optimized [5,6] the dissemination process of
highly anticipated files over such networks remains
unexplored. The purpose of this paper is to show how
such files can be shared by these networks, and present a
network that is designed to assist in file dissemination.
 The structure of this paper is as follows. Section 2
introduces PeerCaster, the agent based platform used. In
section 3 the suggested approach is described. Section 4
shows the simulation model of the system. The results are
summarized in section 5 and finally, section 6 briefly
conceptualizes on the advantages of using mobile agents
for content dissemination, and presents suggestions for
further research.

2. Background

 Software agents are programs that act on behalf of
people. They are able to perform specified tasks that are
assigned to them and can accomplish that with or without
the supervision of the user, according to the given job.

 Mobile agents have an additional property [7]. The
ability to transport themselves on different systems after
being executed, carrying with them their program code,
current state of execution and any data which was
obtained. This gives them the unique capacity of living on
a distributed network rather than on a distant stationary
system, and to take advantage of the services that each
host has to offer locally. Furthermore, mobile agents
allow proprietary code to be used on the hosts, allowing
complete customization of the retrieved results. The
unique properties of the mobile agents give them the edge
in comparison to the traditional client-server paradigm.
The hosts implements a specified environment that can
authenticate the origin and credentials of the arriving
mobile agents, provide for them the necessary execution
machine and limit their access to system resources [8].
 Mobile agents have been used in the past instead of
protocols [9], for file transfer [10] and as a dynamic
system for information discovery and retrieval [11]. There
are many applications that would benefit from the use of
mobile agents as a medium of getting around bottlenecks.
PeerCaster [12] is a platform implemented in Java that
uses mobile agents as a vehicle delivering great amount of
static data to users on a heterogeneous network. This is
done by splitting the data into small packets, load them
onto mobile agents and releasing them to the peers where
the payload is delivered and continue according to their
dynamic itinerary (figure 1). The coordination and
communication overhead is acceptable considering the
scalability that can be gained by the dynamic nature of the
agents. As they can operate asynchronously and
independently of the process that created them they do not
need to report back to the server.
 In this paper, PeerCaster was used as a mean for
distributing high-demand files without clogging the host
computer. This system could be integrated as part of a
P2P file transfer network, or it could be used as an
alternative to multicast for large files with great demand
such as the release of a new version of popular software
as depicted in [1].

3. The Network

 When a file needs to be downloaded by more clients
than the server can handle, alternative algorithms have to
be utilized. Conceptually, the easiest way to avoid
retransmissions is to pipeline the file through all the

Figure 1. Mobile agent based dissemination paradigm

Figure 2. Pipelined clients

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:14 from IEEE Xplore. Restrictions apply.

clients (figure 2). But this is not a viable solution because
clients might have to indefinitely wait to be served.
 The proposed algorithm uses a dynamically changing
tree of clients (figure 3). The server can upload the file to
a certain amount of clients simultaneously. When the
server successfully uploads a file to a client, it keeps a
reference of this client to a short (up to 100 entries) FIFO
list. As new clients are served, the list is enriched with
newer clients and older clients are removed in order to
avoid server explosion. Although the server has a small
queue (of up to 10 clients), most of the clients are
expected to find this queue filled. This is the case
especially in the beginning of the dissemination process,
as clients arrive more rapidly than the server can handle.
When this happens, the server sends to the client the list
of clients that already downloaded the file. This way, the
new client can download the file from a client that was
already served, removing the congestion from the server.
 When a client finishes the download, it acts as a server
for other clients. Similarly to the server, the clients have a
short queue. If a client A requests the file from a client B
that has it, and that client B can not serve client A
immediately, A is queued. If the queue is full, client B
sends its own list of clients that it served (up to 10 entries)
to client A, so that it can continue searching. In case that a
client is not able to be served or queued, it retries after a
certain period of time to contact the server.
 Several issues arise about the performance of this
algorithm in a heterogeneous network. For example, what
is the benefit of allowing several clients to download from
a single peer? It will reduce the average waiting time, but
what consequences will it have on the downloading speed
and in the long run on the total number of served clients?
 Another known issue is that clients with smaller speeds
tend to stay on-line less time after they finish the
download. That’s because most of the time these clients
don’t have a permanent connection to the network (PSTN
or ISDN users), or they need the bandwidth for something
else, so they do not allow other users to download from
them. Users going off-line leave the dissemination tree in
an inconsistent state. Therefore it would be logical to
serve the high-bandwidth clients first, as they are more

likely to stay on the network for longer period of time,
and assist new clients. What affects will that have in the
long run?

4. Simulation model

 In this section we present details of the simulation
model for the proposed network, and show how different
strategies might affect the dissemination process. The
system was populated with clients arriving according to
the exponential distribution using linearly changing mean
interarrival time from 0.5 to 3.5 sec in a period of 3 days
(simulated period: 259200 seconds) simulating this way a
highly anticipated file. The file’s size was set to be
650MB (the size of a full CD). The clients were separated
in eight categories according to their bandwidth as shown
in table 1.

Table 1. Clients’ characteristics. Kbps and Mbps refer to
kilobits per second and megabits per second.

Bandwidth Percentage
of total
arrivals

Average time in the
system after download is
completed (in seconds)

64 Kbps 5% 3600
128 Kbps 5% 3600
256 Kbps 15% 14400
512 Kbps 15% 14400
768 Kbps 15% 14400
1 Mbps 15% 86400

10 Mbps 15% 259200
100 Mbps 15% 259200

 As it was explained earlier, we accepted that clients
connected to the net with higher bandwidth, stay on-line
more time. This period of time is shown on Table 1, and it
varied with exponential distribution in order to simulate
network or client failure. Additionally, dial-up and ISDN
clients are less likely to download such big files from the
net. Therefore, we only allowed 10% of the clients to
have bandwidths of 64Kbps and 128Kbps.
 The server was set to have 100Mbps connection to the
net and to never go offline. It has no queue, but it has a
list of served clients of 100 entries. In order to have the
server working at maximum speed, clients with
bandwidths other than 100Mbps are not served by the
server. The actual connection speed between two clients
is calculated at the beginning of each session, taking into
consideration the theoretical maximum speed they could
achieve and an exponentially distributed surcharge, in
order to simulate additional network traffic and sparse
bottlenecks. The clients have a queue of 10 entries and a
list (of clients served by this client) of 20 entries. If a new
client cannot be served or queued immediately, it waits
for 300 seconds and retries.

Client
Queue List

Client
Queue List

Client
Queue List

Client
Queue List

Client
Queue List

Client
Queue List

Figure 3. The dissemination network

Server
ListQueue

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:14 from IEEE Xplore. Restrictions apply.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 50000 100000 150000 200000 250000

Time

C
lie

n
ts

Served Clients Clients in the Net Clients in the Net, served

Figure 4. State diagram (Case 1)

0

20000

40000

60000

80000

100000

120000

140000

160000

0 50000 100000 150000 200000 250000

Time

C
lie

n
ts

Served Clients Clients in the Net Clients in the Net, served

Figure 6. State diagram (Case 2)

0

1000

2000

3000

4000

5000

6000

7000

10
0

11
50

0
22

90
0

34
30

0
45

70
0

57
10

0
68

50
0

79
90

0
91

30
0

10
27

00
11

41
00

12
55

00
13

69
00

14
83

00
15

97
00

17
11

00
18

25
00

19
39

00
20

53
00

21
67

00
22

81
00

23
95

00
25

09
00

64 Kbps 128 Kbps 256 Kbps 512 Kbps

768 Kbps 1 Mbps 10 Mbps 100 Mbps

Figure 5. Served clients (Case 1)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10
0

11
60

0
23

10
0

34
60

0
46

10
0

57
60

0
69

10
0

80
60

0
92

10
0

10
36

00
11

51
00

12
66

00
13

81
00

14
96

00
16

11
00

17
26

00
18

41
00

19
56

00
20

71
00

21
86

00
23

01
00

24
16

00
25

31
00

64 Kbps 128 Kbps 256 Kbps 512 Kbps

768 Kbps 1 Mbps 10 Mbps 100 Mbps

Figure 7. Served clients (Case 2)

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:14 from IEEE Xplore. Restrictions apply.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 50000 100000 150000 200000 250000

Time

C
lie

n
ts

Served Clients Clients in the Net Clients in the Net, served

Figure 8. State diagram (Case 3)

0

20000

40000

60000

80000

100000

120000

140000

0 50000 100000 150000 200000 250000

Time

C
lie

n
ts

Served Clients Clients in the Net Clients in the Net, served

Figure 10. State diagram (Case 4)

0

5000

10000

15000

20000

25000

10
0

11
60

0
23

10
0

34
60

0
46

10
0

57
60

0
69

10
0

80
60

0
92

10
0

10
36

00
11

51
00

12
66

00
13

81
00

14
96

00
16

11
00

17
26

00
18

41
00

19
56

00
20

71
00

21
86

00
23

01
00

24
16

00
25

31
00

64 Kbps 128 Kbps 256 Kbps 512 Kbps

768 Kbps 1 Mbps 10 Mbps 100 Mbps

Figure 9. Served clients (Case 3)

0

5000

10000

15000

20000

25000

10
0

11
60

0
23

10
0

34
60

0
46

10
0

57
60

0
69

10
0

80
60

0
92

10
0

10
36

00
11

51
00

12
66

00
13

81
00

14
96

00
16

11
00

17
26

00
18

41
00

19
56

00
20

71
00

21
86

00
23

01
00

24
16

00
25

31
00

64 Kbps 128 Kbps 256 Kbps 512 Kbps

768 Kbps 1 Mbps 10 Mbps 100 Mbps

Figure 11. Served clients (Case 4)

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:14 from IEEE Xplore. Restrictions apply.

0

5000

10000

15000

20000

25000

64 Kbps 128 Kbps 256 Kbps 512 Kbps 768 Kbps 1 Mbps 10 Mbps 100 Mbps

C
lie

nt
s

Case 1 Case 2 Case 3 Case 4

Figure 12. Number of clients that finished the download
(up to the time the simulation ended)

 As it was mentioned earlier, the behavior of this
network can change dramatically under certain
conditions. We investigate the system’s performance in
the following cases:

Case 1: A client may serve only one peer at a time.

Therefore no multiple uploads are allowed.
This is expected to decrease the mean service
time.

Case 2: As in case 1, no multiple uploads are allowed.
Additionally, the serving clients are allowed to
queue only 2 peers (the queue size is 10) that
have bandwidth less than that of the serving
client. This way, clients use their bandwidth to
the maximum and most of the clients are
served by peers of similar speed.

Case 3: In this scenario, high-speed clients (1 Mbps,
10 Mbps and 100 Mbps) can serve up to 5
peers.

Case 4: Again up to 5 peers can be served
simultaneously by a high-speed client, but as
in case 2, a policy exists so that only 2 out of
10 peers served by each client, have inferior
bandwidth than that of the serving client.

5 Results / Conclusion

 As it is shown in tables 2 and 3, in the first case the
mean time in queue is the biggest one from all, for speeds
up to 1 Mbps. The mean service time of the 100 Mbps
clients are also increased. This can be explained because
no speed control policy is enforced. Therefore, high-speed
clients can be forced to serve clients with much less
bandwidth.
 In the second case the best mean service time is
observed for 100 Mbps clients. That’s because the
enforced policy makes good use of each client’s
bandwidth. However, this is not the case for the rest of the

clients, which have similar service times to that of the
clients in case 1. This can also be observed by comparing
figures 5 and 7. While there are more than twice 100Mbps
served client in case 2, the served clients on the rest of the
categories decreased. The mean time in queue has also
improved as it was expected. That’s because 8 out of 10
clients in the queue have the same bandwidth as the
serving client. Overall, as it is depicted in figure 4 and 6,
the status of the network hasn’t changed dramatically.
That’s because the increase of the number of 100Mbps
served clients balances out the decrease on the rest of the
categories. Although this policy is proved to be unfair for
slower clients, it can be used as a way to build quickly a
vast backbone tree of high-speed clients in the beginning
of the dissemination.

Table 2. Mean Response Time

 Case 1 Case 2 Case 3 Case 4

64 Kbps 167165 161317 126248 145192

128 Kbps 138986 124581 71865 103789

256 Kbps 120874 107210 43984 80802

512 Kbps 110416 100352 29306 68637

768 Kbps 110213 97230 24530 64296

1 Mbps 107208 97594 22185 65711

10 Mbps 104027 101775 14897 49491

100 Mbps 87178 70727 12825 20239

Table 3. Mean Service Time

 Case 1 Case 2 Case 3 Case 4
64 Kbps 104130 108394 114848 112974

128 Kbps 55046 53741 59979 61650

256 Kbps 28238 28069 31469 32640

512 Kbps 14323 14068 16770 17734

768 Kbps 9435 9631 11915 12737

1 Mbps 7537 7372 9512 12184

10 Mbps 1267 1447 2345 2224

100 Mbps 615 213 1393 251

Table 4. Number of clients that finished the download in 3

days.

 1st simulation 2nd simulation Percentage
Case 1 29978 27679 7.67
Case 2 33118 30636 7.49
Case 3 141935 137281 3.28
Case 4 79177 77685 1.88

 In the third case no speed policy was enforced, but the
high-speed clients (and the server) were allowed to serve
up to 5 clients simultaneously. This had negative affect on
the mean service of all the clients. Especially 100 Mbps
clients were served with up to 7 times slower speeds than
that of case 2. That can be explained, since no measure

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:14 from IEEE Xplore. Restrictions apply.

has been taken to prevent a high-speed client to be queued
on a lower speed client. Additionally, high-speed serving
clients have to share their speed to up to 5 peers. On the
other hand, in the third case we see the smallest mean
time in queue for all clients and therefore, as seen in
figure 12, the biggest amount of served clients. This is
also shown in figure 9, where we can additionally observe
that all the categories of client have similar number of
served clients over time. That’s due to the fact that the
bandwidth of the serving clients is utilized to the
maximum in most of the cases because of the multiple
uploads. 64 and 128Kbps clients are shown to have
significantly decreased numbers only because there was
5% of each of them in the system instead of 15% which
was the case for the other categories.
 As in the previous case, each client in the fourth case
can serve up to 5 clients simultaneously. Additionally, the
“2 out of 10” policy is enforced. Therefore we see mean
service times equivalent to those in the second case,
although slightly increased because the bandwidth is
shared among several clients. However, the mean time in
queue increased significantly, especially for the clients
with limited bandwidth. As we can observe in figure 11,
this has as a result the unfair treatment of the low-speed
clients. That can be explained, as up to 5 same speed
clients are assigned to a serving client of the same
bandwidth. Therefore, although the serving client’s
bandwidth is utilized to the maximum, the clients being
served use 1/5 of their bandwidth.
 Overall, the mean time in queue is increased in all
cases. But this is expected to decrease for simulation
periods of several days. That’s because, as more clients
populate the dissemination network, the file is replicated
to thousands of clients. Therefore a newly arriving client
is more likely to find immediately another peer to be
queued or served from. The steadily increasing mean
service time as the bandwidth is getting lower, is
expected. That’s because clients with lower connections
to the net, finish the download in longer periods of time.
It should be noted that in the third case, as it can be seen
in figure 8, a balance is reached in a relatively short
period of time. This occurs when the number of departing
clients matches the number of arriving clients. In spite of
the rapid client arrivals in the beginning of the
dissemination possess, the balance occurs in about a day.
The fourth experiment offers an alternative for lower
mean service times, but as shown in figure 10, the amount
of served clients is significantly lower than that of the
third experiment and the balance does not occur within
the simulated time.
 Furthermore, another experiment was implemented in
order to check the grade of integrity of the system in each
case. We run the four simulations again, but this time a
10% of the arriving clients were programmed to go off-
line immediately after they get the file. By doing that,

they do not assist at all at the dissemination process and
therefore fewer clients are expected to finish the
download in the given time of 3 days. Table 4 shows the
consequences of this shortcoming.
 The results reveal that the reduction of served clients is
not grater than 10%. This shows that the algorithms do
not degrade analogously, and especially case 4 proved to
be more durable than the rest in this test. The fact that the
observed decrease in the number of served clients is not
as extensive as the number of clients denying to assist
other clients, was expected because as the dissemination
process continues, the increase of the served clients in the
system becomes sufficient enough to counteract this
problem. Table 4 also reveals that case 2 and 4 are more
suitable for such scenarios than their counterparts. That
can be explained as the dissemination tree maintained in
those cases is more consistent over time. That’s because
low speed clients, which are not likely to stay for a long
period of time in the system after they get the file, are
placed at the lower levels of the dissemination tree.

6 Future Work

 For the current P2P network implementation we used a
monolithic approach: all the data has to be sent to a client,
before this client starts sending it to another peer. The
PeerCaster platform is highly scalable because it was
implemented using mobile agents. A new version that
replicates groups of 128KB packets, to adjacent peers as
they come, is under way. This is expected to alleviate the
problems that are caused from peers that go off-line
immediately or soon after they finish downloading the
requested file. The synchronization between the peers are
done in predetermine time intervals, called Epochs [13].
The peers are segmented in virtual groups according to
their bandwidth and the epoch size is depended on an
estimation of the minimum bandwidth between the peers
that form each dissemination group. Simulation results
from this network are expected to show alleviation of
issues raised in the third case. Additional we incorporated
varying with time distributions as depicted in [14] for
more realistic long-run simulations. We are also working
towards creating a version that uses prior knowledge of a
peer’s content to push newly arrived packets and utilizes
software FEC.

References

[1] Schooler E. & Gemmell J. (1997). Using Multicast FEC to
solve the Midnight Madness Problem. Microsoft research.

[2] Rizzo L. (1997). On the feasibility of software FEC.
Technical report, Univ. di Pisa, Italy.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:14 from IEEE Xplore. Restrictions apply.

[3] Parameswaran M., Susarla A. & Whinston A. (2001). P2P
Networking: An Information-Sharing Alternative. IEEE
Computer, v.34, pp. 31-38.

[4] Eytan A. & Huberman B. (2000). Free Riding on Gnutella.
Xerox Palo Alto Research Center.

[5] Evangelos P. Markatos (2002). Tracing a large-scale Peer to
Peer System: an hour in the life of Gnutella. In the Proceedings
of the CCGrid 2002: the second IEEE International Symposium
on Cluster Computing and the Grid, May 2002, pages 65-74.

[6] Matei Ripeanu, Ian Foster, (2002). Mapping the Gnutella
Network. IEEE Internet Computing, January 2002, pages 50-57

[7] Chess, D., Grosof, B., Harrison, C., Levine, D., Parris, C.,
Tsudik, G., 1995. Itinerant Agents for Mobile Computing.
Journal of IEEE Personal Communications, 2 (5).

[8] Harrison C., Chess D. & Kershenbaum A. (1995) Mobile
Agents: Are They a Good Idea? Research report. IBM T.J.
Watson Research Center, Yorktown Heights, New York.

[9] Joy B. (2000). Shift from Protocols to Agents. IEEE Internet
Computing, v.4, pp.63-63.

[10] Spalink T., Hartman J. & Gibson G. (1999). The Effects of
a Mobile Agent on File Service. Proceedings of the First
International Symposium on Agent Systems and Applications
Third International Symposium on Mobile Agents (ASA/MA
'99), Palm Springs, California, IEEE Computer Society, pp. 42-
49.

[11] K.G. Zerfiridis, and H.D. Karatza. "Brute Force Web
Search for Wireless Devices Using Mobile Agents”. To appear
in the Journal of Systems and Software, Elsevier (Accepted for
publication).

[12] K.G. Zerfiridis, and H.D. Karatza. "Mobile Agents as a
Middleware for Data Dissemination”. Neural, Parallel &
Scientific Computations, Dynamic Publishers, Atlanta, Vol 10,
2002, pp. 313-323.

[13] Karatza H. and Hilzer R.C. "Epoch Load Sharing in a
Network of Workstations". Proceedings of the 34th Annual
Simulation Symposium, IEEE Computer Society Press, SCS,
Seattle, Washington, April 22-26, 2001, pp. 36-42.

[14] H.D. Karatza (2002). "Task Scheduling Performance in
Distributed Systems with Time Varying Workload”, Neural,
Parallel & Scientific Computations, Dynamic Publishers,
Atlanta, 10, 2002, pp. 325-338.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:14 from IEEE Xplore. Restrictions apply.

