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Abstract 
 

 As the average bandwidth capacity is increasing, users 
around the world demand for shorter service time. While 
the servers are able to acquire more bandwidth, they can 
not keep up with the rapidly increasing requests of the 
users. Several systems appeared that alleviate the server 
from the dissemination process. The evolution of Peer-to-
Peer systems gave a new way of attacking this problem. 
But as they got increasingly widespread, certain patterns 
became apparent. Uneven flow of data and intersperse 
congestion points compromised interdomain quality of 
service. In this paper we demonstrate how traditional 
systems meet users’ demands, and present simulation 
results of a peer-to-peer approach based on a mobile 
agent platform. Our focus is on using the server’s and the 
clients’ resources in an optimum way to serve as many 
clients as possible in a certain period of time. 
 
 
1 Introduction 
 
 When any sizable data has to be disseminated to a 
numerous amount of receivers, the network can be 
saturated quickly, clogging the host computer. Such is the 
case for example when any highly anticipated software is 
released and several people are trying to download it at 
the same time. This became known as the middle night 
madness problem [1], as that’s the time new software are 
made available, in order to avoid congestion. 
 As today’s needs for data transfer steadily increases, 
traditional ways of making data available to the masses 
become obsolete. Conventional HTTP and FTP servers 
can no longer serve as a way of distributing large amounts 
of data. That’s because, in the case that no failures occur, 
the sum of the served clients could theoretically reach: 
 

N = (Server_Bandwidth) * (Total_Time) / (File_Size) 
 
 Mirroring the required content on several disperse 
servers, doesn’t always compensate for the rapid traffic 

increase, because for example modern Linux distributions 
can span more than one CD. Assuming for example that 
the server’s bandwidth is 1 MBit/sec and the requested 
software is distributed in 2 ISO CD images, the server 
could only serve about 50 clients in a period of one week. 
 The main architectural used for casting data through 
the Internet is IP multicast, which mainly targets realtime 
non-reliable applications. Although it has been considered 
as the foundation for internet distribution and it is 
available in most routers and on most operating systems, 
IP multicast has not so far lived up to early expectations. 
Its fundamental problem is that it requires that all 
recipients receive the content at the same time. The most 
popular solution to this problem was to multicast the 
content multiple times until all recipients receive it. Some 
of the other drawbacks of IP multicast include small 
address space (26-bit), need of large routing tables and 
lack of congestion control and reliable transfer control. 
 Several algorithms arise for membership management 
and packet replication to solve problems such as server 
implosion from client side NACKs (negative 
acknowledgments), server explosion from keeping status 
of the download process for each client and managing 
downloads requests by users connected with different 
bandwidths. Forward Error Correction (FEC) has long 
being used for the dissemination of static data as it 
provides graceful degradation of performance in the 
presence of packet losses. It is based on (n,k) erasure code 
which encodes k source data packets into n encoded data 
packets, where n>k. The encoding guaranties that any 
given k of the n encoded packets are enough to 
reconstruct the k source data packets. FEC has been used 
in many multicast scenarios such as Filecast [1] and 
SwarmCast. Its greatest disadvantage is that it is very 
demanding on CPU and memory [2].  
 Although IP multicast might be considered ideal for 
applications that require relatively high and constant 
throughput but not much delay, it is not suitable for 
applications that may tolerate significant delays but no 
loss. This is the case with file distribution. These days, a 
new way of disseminating files emerged. File sharing 
networks [3] are perhaps the most commonly used Peer-
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To-Peer application. P2P systems existed since the birth 
of the Internet, but as bandwidth, computational power 
and great storage capacity came to the masses, their 
popularity increased. Such systems have been used for 
diverse applications: combining the computational power 
of thousands of computers, forming collaborative 
communities, instant messaging, etc.  
 P2P file sharing networks’ main purpose is to create a 
common pool of files where everybody can search and 
retrieve any shared files. But along with their popularity 
several problems emerged. Xerox Palo Alto Research 
Center showed that 70% of Gnutella users provided no 
files or resources to the system and that 1% of the users 
were providing half of the total system resources [4]. This 
created network bottlenecks causing farther interdomain 
jamming. 
 File sharing networks had never been designed for file 
dissemination. Nevertheless people turn to them to find 
highly anticipated software or even video file, when the 
official server stops responding due to high demand. 
Although extensive research has been done about how 
existing P2P networks operate over time and how they 
can be optimized [5,6] the dissemination process of 
highly anticipated files over such networks remains 
unexplored. The purpose of this paper is to show how 
such files can be shared by these networks, and present a 
network that is designed to assist in file dissemination. 
 The structure of this paper is as follows. Section 2 
introduces PeerCaster, the agent based platform used. In 
section 3 the suggested approach is described. Section 4 
shows the simulation model of the system. The results are 
summarized in section 5 and finally, section 6 briefly 
conceptualizes on the advantages of using mobile agents 
for content dissemination, and presents suggestions for 
further research. 
 
2. Background 
 
 Software agents are programs that act on behalf of 
people. They are able to perform specified tasks that are 
assigned to them and can accomplish that with or without 
the supervision of the user, according to the given job. 

 Mobile agents have an additional property [7]. The 
ability to transport themselves on different systems after 
being executed, carrying with them their program code, 
current state of execution and any data which was 
obtained. This gives them the unique capacity of living on 
a distributed network rather than on a distant stationary 
system, and to take advantage of the services that each 
host has to offer locally. Furthermore, mobile agents 
allow proprietary code to be used on the hosts, allowing 
complete customization of the retrieved results. The 
unique properties of the mobile agents give them the edge 
in comparison to the traditional client-server paradigm. 
The hosts implements a specified environment that can 
authenticate the origin and credentials of the arriving 
mobile agents, provide for them the necessary execution 
machine and limit their access to system resources [8]. 
 Mobile agents have been used in the past instead of 
protocols [9], for file transfer [10] and as a dynamic 
system for information discovery and retrieval [11]. There 
are many applications that would benefit from the use of 
mobile agents as a medium of getting around bottlenecks. 
PeerCaster [12] is a platform implemented in Java that 
uses mobile agents as a vehicle delivering great amount of 
static data to users on a heterogeneous network. This is 
done by splitting the data into small packets, load them 
onto mobile agents and releasing them to the peers where 
the payload is delivered and continue according to their 
dynamic itinerary (figure 1). The coordination and 
communication overhead is acceptable considering the 
scalability that can be gained by the dynamic nature of the 
agents. As they can operate asynchronously and 
independently of the process that created them they do not 
need to report back to the server. 
 In this paper, PeerCaster was used as a mean for 
distributing high-demand files without clogging the host 
computer. This system could be integrated as part of a 
P2P file transfer network, or it could be used as an 
alternative to multicast for large files with great demand 
such as the release of a new version of popular software 
as depicted in [1]. 
 
3. The Network  
 
 When a file needs to be downloaded by more clients 
than the server can handle, alternative algorithms have to 
be utilized. Conceptually, the easiest way to avoid 
retransmissions is to pipeline the file through all the 

Figure 1. Mobile agent based dissemination paradigm 

Figure 2. Pipelined clients 
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clients (figure 2). But this is not a viable solution because 
clients might have to indefinitely wait to be served.  
 The proposed algorithm uses a dynamically changing 
tree of clients (figure 3). The server can upload the file to 
a certain amount of clients simultaneously. When the 
server successfully uploads a file to a client, it keeps a 
reference of this client to a short (up to 100 entries) FIFO 
list. As new clients are served, the list is enriched with 
newer clients and older clients are removed in order to 
avoid server explosion. Although the server has a small 
queue (of up to 10 clients), most of the clients are 
expected to find this queue filled. This is the case 
especially in the beginning of the dissemination process, 
as clients arrive more rapidly than the server can handle. 
When this happens, the server sends to the client the list 
of clients that already downloaded the file. This way, the 
new client can download the file from a client that was 
already served, removing the congestion from the server. 
 When a client finishes the download, it acts as a server 
for other clients. Similarly to the server, the clients have a 
short queue. If a client A requests the file from a client B 
that has it, and that client B can not serve client A 
immediately, A is queued. If the queue is full, client B 
sends its own list of clients that it served (up to 10 entries) 
to client A, so that it can continue searching. In case that a 
client is not able to be served or queued, it retries after a 
certain period of time to contact the server. 
 Several issues arise about the performance of this 
algorithm in a heterogeneous network. For example, what 
is the benefit of allowing several clients to download from 
a single peer? It will reduce the average waiting time, but 
what consequences will it have on the downloading speed 
and in the long run on the total number of served clients?  
 Another known issue is that clients with smaller speeds 
tend to stay on-line less time after they finish the 
download. That’s because most of the time these clients 
don’t have a permanent connection to the network (PSTN 
or ISDN users), or they need the bandwidth for something 
else, so they do not allow other users to download from 
them. Users going off-line leave the dissemination tree in 
an inconsistent state. Therefore it would be logical to 
serve the high-bandwidth clients first, as they are more 

likely to stay on the network for longer period of time, 
and assist new clients. What affects will that have in the 
long run? 
 
4. Simulation model 

 
 In this section we present details of the simulation 
model for the proposed network, and show how different 
strategies might affect the dissemination process. The 
system was populated with clients arriving according to 
the exponential distribution using linearly changing mean 
interarrival time from 0.5 to 3.5 sec in a period of 3 days 
(simulated period: 259200 seconds) simulating this way a 
highly anticipated file. The file’s size was set to be 
650MB (the size of a full CD). The clients were separated 
in eight categories according to their bandwidth as shown 
in table 1. 
  

Table 1. Clients’ characteristics. Kbps and Mbps refer to 
kilobits per second and megabits per second. 

Bandwidth Percentage 
of total 
arrivals 

Average time in the 
system after download is 
completed (in seconds) 

64 Kbps 5% 3600 
128 Kbps 5% 3600 
256 Kbps 15% 14400 
512 Kbps 15% 14400 
768 Kbps 15% 14400 
1 Mbps 15% 86400 

10 Mbps 15% 259200 
100 Mbps 15% 259200 

 
 As it was explained earlier, we accepted that clients 
connected to the net with higher bandwidth, stay on-line 
more time. This period of time is shown on Table 1, and it 
varied with exponential distribution in order to simulate 
network or client failure. Additionally, dial-up and ISDN 
clients are less likely to download such big files from the 
net. Therefore, we only allowed 10% of the clients to 
have bandwidths of 64Kbps and 128Kbps. 
 The server was set to have 100Mbps connection to the 
net and to never go offline. It has no queue, but it has a 
list of served clients of 100 entries. In order to have the 
server working at maximum speed, clients with 
bandwidths other than 100Mbps are not served by the 
server. The actual connection speed between two clients 
is calculated at the beginning of each session, taking into 
consideration the theoretical maximum speed they could 
achieve and an exponentially distributed surcharge, in 
order to simulate additional network traffic and sparse 
bottlenecks. The clients have a queue of 10 entries and a 
list (of clients served by this client) of 20 entries. If a new 
client cannot be served or queued immediately, it waits 
for 300 seconds and retries. 

Client 
Queue List 

Client 
Queue List

Client 
Queue List 

Client 
Queue List 

Client 
Queue List 

Client 
Queue List

Figure 3. The dissemination network 

Server 
ListQueue
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Figure 4. State diagram (Case 1) 
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Figure 6. State diagram (Case 2) 
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Figure 5. Served clients (Case 1) 
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Figure 7. Served clients (Case 2) 
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Figure 8. State diagram (Case 3) 
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Figure 10. State diagram (Case 4) 
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Figure 9. Served clients (Case 3) 
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Figure 11. Served clients (Case 4) 
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Figure 12. Number of clients that finished the download 
(up to the time the simulation ended)  
 
 
 As it was mentioned earlier, the behavior of this 
network can change dramatically under certain 
conditions. We investigate the system’s performance in 
the following cases: 
 
Case 1: A client may serve only one peer at a time. 

Therefore no multiple uploads are allowed. 
This is expected to decrease the mean service 
time. 

Case 2: As in case 1, no multiple uploads are allowed. 
Additionally, the serving clients are allowed to 
queue only 2 peers (the queue size is 10) that 
have bandwidth less than that of the serving 
client. This way, clients use their bandwidth to 
the maximum and most of the clients are 
served by peers of similar speed. 

Case 3: In this scenario, high-speed clients (1 Mbps, 
10 Mbps and 100 Mbps) can serve up to 5 
peers. 

Case 4: Again up to 5 peers can be served 
simultaneously by a high-speed client, but as 
in case 2, a policy exists so that only 2 out of 
10 peers served by each client, have inferior 
bandwidth than that of the serving client. 

 
5 Results / Conclusion 
 
 As it is shown in tables 2 and 3, in the first case the 
mean time in queue is the biggest one from all, for speeds 
up to 1 Mbps. The mean service time of the 100 Mbps 
clients are also increased. This can be explained because 
no speed control policy is enforced. Therefore, high-speed 
clients can be forced to serve clients with much less 
bandwidth. 
 In the second case the best mean service time is 
observed for 100 Mbps clients. That’s because the 
enforced policy makes good use of each client’s 
bandwidth. However, this is not the case for the rest of the 

clients, which have similar service times to that of the 
clients in case 1. This can also be observed by comparing 
figures 5 and 7. While there are more than twice 100Mbps 
served client in case 2, the served clients on the rest of the 
categories decreased. The mean time in queue has also 
improved as it was expected. That’s because 8 out of 10 
clients in the queue have the same bandwidth as the 
serving client. Overall, as it is depicted in figure 4 and 6, 
the status of the network hasn’t changed dramatically. 
That’s because the increase of the number of 100Mbps 
served clients balances out the decrease on the rest of the 
categories. Although this policy is proved to be unfair for 
slower clients, it can be used as a way to build quickly a 
vast backbone tree of high-speed clients in the beginning 
of the dissemination. 
 

Table 2. Mean Response Time 

 Case 1 Case 2 Case 3 Case 4 

64 Kbps 167165 161317 126248 145192 

128 Kbps 138986 124581 71865 103789 

256 Kbps 120874 107210 43984 80802 

512 Kbps 110416 100352 29306 68637 

768 Kbps 110213 97230 24530 64296 

1 Mbps 107208 97594 22185 65711 

10 Mbps 104027 101775 14897 49491 

100 Mbps 87178 70727 12825 20239 
 

Table 3. Mean Service Time 

 Case 1 Case 2 Case 3 Case 4 
64 Kbps 104130 108394 114848 112974 

128 Kbps 55046 53741 59979 61650 

256 Kbps 28238 28069 31469 32640 

512 Kbps 14323 14068 16770 17734 

768 Kbps 9435 9631 11915 12737 

1 Mbps 7537 7372 9512 12184 

10 Mbps 1267 1447 2345 2224 

100 Mbps 615 213 1393 251 
 
Table 4. Number of clients that finished the download in 3 

days. 

 1st simulation 2nd simulation Percentage 
Case 1 29978 27679 7.67 
Case 2 33118 30636 7.49 
Case 3 141935 137281 3.28 
Case 4 79177 77685 1.88 

 
 In the third case no speed policy was enforced, but the 
high-speed clients (and the server) were allowed to serve 
up to 5 clients simultaneously. This had negative affect on 
the mean service of all the clients. Especially 100 Mbps 
clients were served with up to 7 times slower speeds than 
that of case 2. That can be explained, since no measure 
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has been taken to prevent a high-speed client to be queued 
on a lower speed client. Additionally, high-speed serving 
clients have to share their speed to up to 5 peers. On the 
other hand, in the third case we see the smallest mean 
time in queue for all clients and therefore, as seen in 
figure 12, the biggest amount of served clients. This is 
also shown in figure 9, where we can additionally observe 
that all the categories of client have similar number of 
served clients over time. That’s due to the fact that the 
bandwidth of the serving clients is utilized to the 
maximum in most of the cases because of the multiple 
uploads. 64 and 128Kbps clients are shown to have 
significantly decreased numbers only because there was 
5% of each of them in the system instead of 15% which 
was the case for the other categories. 
 As in the previous case, each client in the fourth case 
can serve up to 5 clients simultaneously. Additionally, the 
“2 out of 10” policy is enforced. Therefore we see mean 
service times equivalent to those in the second case, 
although slightly increased because the bandwidth is 
shared among several clients. However, the mean time in 
queue increased significantly, especially for the clients 
with limited bandwidth. As we can observe in figure 11, 
this has as a result the unfair treatment of the low-speed 
clients. That can be explained, as up to 5 same speed 
clients are assigned to a serving client of the same 
bandwidth. Therefore, although the serving client’s 
bandwidth is utilized to the maximum, the clients being 
served use 1/5 of their bandwidth. 
 Overall, the mean time in queue is increased in all 
cases. But this is expected to decrease for simulation 
periods of several days. That’s because, as more clients 
populate the dissemination network, the file is replicated 
to thousands of clients. Therefore a newly arriving client 
is more likely to find immediately another peer to be 
queued or served from. The steadily increasing mean 
service time as the bandwidth is getting lower, is 
expected. That’s because clients with lower connections 
to the net, finish the download in longer periods of time. 
It should be noted that in the third case, as it can be seen 
in figure 8, a balance is reached in a relatively short 
period of time. This occurs when the number of departing 
clients matches the number of arriving clients. In spite of 
the rapid client arrivals in the beginning of the 
dissemination possess, the balance occurs in about a day. 
The fourth experiment offers an alternative for lower 
mean service times, but as shown in figure 10, the amount 
of served clients is significantly lower than that of the 
third experiment and the balance does not occur within 
the simulated time. 
 Furthermore, another experiment was implemented in 
order to check the grade of integrity of the system in each 
case. We run the four simulations again, but this time a 
10% of the arriving clients were programmed to go off-
line immediately after they get the file. By doing that, 

they do not assist at all at the dissemination process and 
therefore fewer clients are expected to finish the 
download in the given time of 3 days. Table 4 shows the 
consequences of this shortcoming. 
 The results reveal that the reduction of served clients is 
not grater than 10%. This shows that the algorithms do 
not degrade analogously, and especially case 4 proved to 
be more durable than the rest in this test. The fact that the 
observed decrease in the number of served clients is not 
as extensive as the number of clients denying to assist 
other clients, was expected because as the dissemination 
process continues, the increase of the served clients in the 
system becomes sufficient enough to counteract this 
problem. Table 4 also reveals that case 2 and 4 are more 
suitable for such scenarios than their counterparts. That 
can be explained as the dissemination tree maintained in 
those cases is more consistent over time. That’s because 
low speed clients, which are not likely to stay for a long 
period of time in the system after they get the file, are 
placed at the lower levels of the dissemination tree. 
 
6 Future Work 
 
 For the current P2P network implementation we used a 
monolithic approach: all the data has to be sent to a client, 
before this client starts sending it to another peer. The 
PeerCaster platform is highly scalable because it was 
implemented using mobile agents. A new version that 
replicates groups of 128KB packets, to adjacent peers as 
they come, is under way. This is expected to alleviate the 
problems that are caused from peers that go off-line 
immediately or soon after they finish downloading the 
requested file. The synchronization between the peers are 
done in predetermine time intervals, called Epochs [13]. 
The peers are segmented in virtual groups according to 
their bandwidth and the epoch size is depended on an 
estimation of the minimum bandwidth between the peers 
that form each dissemination group. Simulation results 
from this network are expected to show alleviation of 
issues raised in the third case. Additional we incorporated 
varying with time distributions as depicted in [14] for 
more realistic long-run simulations. We are also working 
towards creating a version that uses prior knowledge of a 
peer’s content to push newly arrived packets and utilizes 
software FEC. 
 
References 
 
[1] Schooler E. & Gemmell J. (1997). Using Multicast FEC to 
solve the Midnight Madness Problem. Microsoft research. 
 
[2] Rizzo L. (1997). On the feasibility of software FEC. 
Technical report, Univ. di Pisa, Italy. 
 

Proceedings of the 36th Annual Simulation Symposium (ANSS’03) 

1080-241X/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:14 from IEEE Xplore.  Restrictions apply.



[3] Parameswaran M., Susarla A. & Whinston A. (2001). P2P 
Networking: An Information-Sharing Alternative. IEEE 
Computer, v.34, pp. 31-38. 
 
[4] Eytan A. & Huberman B. (2000). Free Riding on Gnutella. 
Xerox Palo Alto Research Center. 
 
[5] Evangelos P. Markatos (2002). Tracing a large-scale Peer to 
Peer System: an hour in the life of Gnutella. In the Proceedings 
of the CCGrid 2002: the second IEEE International Symposium 
on Cluster Computing and the Grid, May 2002, pages 65-74. 
 
[6] Matei Ripeanu, Ian Foster, (2002). Mapping the Gnutella 
Network. IEEE Internet Computing, January 2002, pages 50-57 
 
[7] Chess, D., Grosof, B., Harrison, C., Levine, D., Parris, C., 
Tsudik, G., 1995. Itinerant Agents for Mobile Computing. 
Journal of IEEE Personal Communications, 2 (5). 
 
[8] Harrison C., Chess D. & Kershenbaum A. (1995) Mobile 
Agents: Are They a Good Idea? Research report. IBM T.J. 
Watson Research Center, Yorktown Heights, New York. 
 
[9] Joy B. (2000). Shift from Protocols to Agents. IEEE Internet 
Computing, v.4, pp.63-63. 
 

[10] Spalink T., Hartman J. & Gibson G. (1999). The Effects of 
a Mobile Agent on File Service. Proceedings of the First 
International Symposium on Agent Systems and Applications 
Third International Symposium on Mobile Agents (ASA/MA 
'99), Palm Springs, California, IEEE Computer Society, pp. 42-
49. 
 
[11] K.G. Zerfiridis, and H.D. Karatza. "Brute Force Web 
Search for Wireless Devices Using Mobile Agents”. To appear 
in the Journal of Systems and Software, Elsevier (Accepted for 
publication).  
 
[12] K.G. Zerfiridis, and H.D. Karatza. "Mobile Agents as a 
Middleware for Data Dissemination”. Neural, Parallel & 
Scientific Computations, Dynamic Publishers, Atlanta, Vol 10, 
2002, pp. 313-323.  
 
[13] Karatza H. and Hilzer R.C. "Epoch Load Sharing in a 
Network of Workstations". Proceedings of the 34th Annual 
Simulation Symposium, IEEE Computer Society Press, SCS, 
Seattle, Washington, April 22-26, 2001, pp. 36-42. 
 
[14] H.D. Karatza (2002). "Task Scheduling Performance in 
Distributed Systems with Time Varying Workload”, Neural, 
Parallel & Scientific Computations, Dynamic Publishers, 
Atlanta, 10, 2002, pp. 325-338. 

 

Proceedings of the 36th Annual Simulation Symposium (ANSS’03) 

1080-241X/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:14 from IEEE Xplore.  Restrictions apply.


