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Abstract 
 
 Efficient scheduling of jobs on parallel processors is 
essential for good performance. However, design of such 
schedulers is challenging because of the complex 
interaction between system and workload parameters. 
This paper studies the performance of a partitionable 
parallel system in which job scheduling depends on job 
characteristics. Jobs consist of different number of tasks 
and are characterized as sequential or parallel depending 
on whether the tasks are processed sequentially on the 
same processor or at different processors. Jobs that 
consist of parallel tasks are called gangs, that is, they have 
to be scheduled to execute concurrently on processor 
partitions, where each task starts at the same time and 
computes at the same pace. The goal is to achieve good 
performance of sequential and parallel jobs. The 
performance of different scheduling schemes is compared 
over various workloads. Simulated results indicate that 
sequential jobs should not arbitrary overtake the 
execution of parallel jobs. 
 
 
1. Introduction 
 
 The scheduling of jobs on processors of a partitionable 
parallel machine is an important and challenging area. 
The allocation and management of resources for these 
systems is fundamental to sustaining and improving the 
benefits of multiprocessing [3], and [9].  
 Jobs usually have different characteristics. For 
example, some jobs are comprised of sequential tasks, 
while other jobs consist of multiple tasks that can be run 
in parallel on different processors. It is not possible to 
efficiently execute all jobs with one type of scheduler. It 
is crucial to apply the proper scheduling strategy to jobs 
according to their characteristics.  
 In this paper we compare the effect of different job 
scheduling policies operating under various workloads. 
The goal is to achieve high system performance while 

maintaining fairness in terms of sequential and parallel 
job execution. 
 Our work involves a shared memory system with 128 
processors. We use a scalable, coherent shared address 
space (SAS) multiprocessing system that has been the 
focus of many other studies. Over the last decade, a 
number of hardware cache-coherent, non-uniform 
memory access architectures (so-called hardware-DSM or 
CC-NUMA machines) have been implemented and shown 
to perform well at a moderate scale of about 32 
processors. In fact, such machines are quickly becoming 
the dominant form of tightly coupled multiprocessor 
machines built by commercial vendors.  
 An open question is how scalable these architecture 
configurations are to larger processor numbers. In [7], the 
performance of a wide range of SAS parallel applications 
on a 128-processor hardware cache-coherent machine (the 
SGI Origin2000) is studied. It is demonstrated that 
scalable performance is indeed achieved with this 
programming model over a wide range of applications, 
including the challenging of kernels like FFT.  
 This study considers a partitionable parallel 
processing system where the partitions are subsystems 
allocated to independent jobs. Some of the jobs are 
sequential while the remainder are parallel. Sequential 
tasks run on the same processor. Parallel tasks execute 
concurrently on a set of processors. The parallel tasks 
start at essentially the same time, co-ordinate their 
execution, and compute at the same pace. This type of 
resource management is called “coscheduling” or “gang 
scheduling” and is extensively studied in the literature of 
parallel and distributed systems [1], [2], [4], [5], [6], [8], 
[10], [11], [13], [14], and [15]. 
 Jobs begin execution only if enough idle processors 
are available to handle them. However, a scheduling 
policy is needed to determine which job is to be mapped 
to the available processors. In order to achieve fairness in 
terms of individual job class service, sequential jobs 
should not be arbitrarily scheduled ahead of the parallel 
jobs.  
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 The design choices considered in this paper include 
different ways to schedule sequential jobs and gangs for 
service on the system processors. The performance of 
different scheduling policies is compared for various 
workloads. The authors have found no evidence that this 
type of scheduling has previously been applied to this 
system operating under these workload models. 
 The scheduling of sequential jobs and gangs in a parti-
tionable parallel system was studied earlier in [10]. 
However, in that paper the system is a closed queuing 
network with a fixed number of jobs. Furthermore, while 
that paper examines only one case relating to the number 
of tasks per parallel and sequential job, this one examines 
various cases.  
 The technique used to evaluate the performance of the 
scheduling disciplines is experimentation using a 
synthetic workload simulation. In studies like this, it is 
usually necessary to use synthetic workloads because real 
workloads cannot be simulated efficiently enough and 
real systems with actual workloads are not available for 
experimentation. Also, useful analytic models are difficult 
to derive because subtleties that exist between various 
disciplines are difficult to model and because the 
workload model is quite complex. 
 This paper is an experimental study in that the results 
are obtained from simulation studies instead of from the 
measurements of real systems. Nevertheless, the results 
presented are of practical value. All of the algorithms are 
practical in that they can be implemented. Although we 
do not derive absolute performance values for specific 
systems and workloads, we do study the relative 
performance of the different algorithms across a broad 
range of workloads and analyze how changes in the 
workload can affect performance.  
 The structure of this paper is as follows. Section 2.1 
specifies system and workload models, section 2.2 
describes scheduling strategies, and section 2.3 presents 
the metrics employed while assessing performance of the 
scheduling policies. Experimental methodology is 
described in section 3, while experimental results are 
presented and analyzed in section 4. Section 5 contains 
conclusions and suggestions for further research. 
 
2. Model and methodology 
 
2.1 System and workload models 
 
 An open queuing network model is considered that 
consists of P = 128 parallel homogeneous processors. 
 All processors share a single queue (memory). The ef-
fects of the memory requirements and the communication 
latencies are not represented explicitly in the system mo-
del. Instead, they appear implicitly at job execution time. 
 The configuration of the model is shown in Figure 1. 
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Figure 1. The queuing network model 
 
 The queuing network model is implemented with 
discrete event simulation. We evaluate the performance of 
job scheduling algorithms under various workload 
models, each of which has certain characteristics relating 
to the:  
 
. Number of job tasks.  
. Interdependence of job tasks.  
. The distribution of job inter-arrival time. 
. The distribution of task service demand. 
 
. Number of tasks per job  
  
 We consider that every job x consists of tx tasks where 
1 ≤ tx ≤ P. Therefore, we bind the number of tasks per job 
to the number of processors in the system. The number of 
tasks that make up job x is called the “size” of job x. A 
job is said to be “small” (or “large”) if it consists of a 
small (or large) number of tasks. The number of 
processors required by job x is represented as p(x). It is 
obvious that tx ≥ p(x).  
 The analysis of real workload logs, collected from 
many large-scale parallel computers used in production, 
shows that the percentage of small jobs, with a small 
number of tasks, is higher than large jobs, with a large 
number of tasks. For this reason, we examine the 
following distribution for the number of tasks per job. 
 
Uniform-log model 
 
 Job size is an integer calculated by 2i within the range 
[1, P], where i is an integer in the range [0, logP]. The 
probability of each value is uniform. Therefore, in our 
model job sizes are 1, 2, 4, 8, 16, 32, 64, 128.  
 
. Interdependence among tasks of a job  
 
 We consider that the tasks of a job belong to one of 
the following two categories:  
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Sequential tasks 
 
 Job tasks have precedence constraints and have to be 
processed in sequence on the same processor. Therefore, 
it holds that p(x) = 1 and tx ≥  p(x).  
 
Gangs 
 
 Those jobs consisting of tasks that execute 
concurrently on processor partitions, where each task 
starts at the same time and computes at the same pace, are 
called gangs. Gang scheduling executes a set of tasks 
simultaneously on a set of processors. It allows tasks to 
interact efficiently by busy waiting, without the risk of 
waiting for a task that currently is not running. Without 
gang scheduling, tasks must block in order to 
synchronize, thus incurring context switch overhead. At 
any time, there is a one-to-one mapping between tasks 
and processors. We assume that all tasks within the same 
gang execute for the same amount of time, i.e., the 
computational load is balanced among them. Each job 
begins execution only when a sufficient number of idle 
processors are available to meet its needs. It holds that: tx 
= p(x). 
 Gangs x1, x2, ... xm can be executed simultaneously 
with s sequential jobs, where 0 ≤ s < P, if and only if the 
following relation holds: 
 

s + ∑
=

m

i
ixp

1

)( ≤ P. 

 
 In our model, jobs that consist of 1 ≤ n ≤ Nmax tasks 
are sequential, while jobs that consist of Nmax < n ≤ P 
tasks are gangs. We examine different Nmax values.  
 
. Distribution of job inter-arrival time 
 
 We consider that job inter-arrival times are 
exponential random variables with a mean of 1/�.   
 
. Distribution of task service demand 
 
 Service demands of tasks of sequential and parallel 
jobs are exponentially distributed with a mean of 1/�.   
   
 The sequence that jobs in the queue are served 
depends on the scheduling policy. Fairness is required 
across competing jobs. 
 Next we describe the scheduling strategies selected for 
this study. As is the case with most studies, we assume 
that scheduling overhead is negligible. We also assume 
that the scheduler has perfect information when making 

decisions, i.e. it knows the exact number of processors 
required by all jobs in the queue. 
 
2.2 Job scheduling policies 
 
Adapted First Come First Served (AFCFS)  
 
 When a processor or a set of processors become idle, 
all jobs in the queue are examined in sequence for 
execution on the available processors. One major problem 
with AFCFS is that it may introduce large queuing delays 
within gangs since it favors sequential job tasks. This 
problem is compensated for in the following method. 
 
AFCFS-Blocking of Sequential Jobs (AFCFS-BS)  
 
 When a job leaves, if the first job in the queue is a 
gang and it can be scheduled, then all other jobs in the 
queue are examined for execution on the remaining 
available processors. If the gang cannot start on the 
available processors, then only other gangs in the queue 
are examined. Sequential jobs are blocked. When a 
sequential job arrives and the first job in the queue is a 
gang, the sequential job is blocked. 
 
Largest Gang First Served / Shortest Sequential Job First 
Served (LG-SS) 
 
 With this method, gangs are placed in processor 
queues in the order of increasing job size (larger gangs are 
moved to the head of the queue). On the other hand, it is 
well known that when coscheduling is not required for 
tasks of jobs, shortest service time first is the optimal 
method. However, in most cases, advance knowledge of 
task service time is not available. For this reason, we 
consider the number of tasks of a sequential job as an 
indication of the cumulative service time of its constituent 
tasks. Sequential jobs (groups of sequential tasks) are 
placed in the queue in decreasing number of task order.  
 
LG-SS-Blocking of Sequential Jobs (LG-SS-BS) 
 
 This is a version of the LG-SS policy where the 
blocking of sequential jobs occurs in a manner similar to 
the AFCFS –BS case. 
 
2.3 Performance metrics 
 
 Response time of a job is the time interval from the 
arrival of that job at the processors queue to the service 
completion time for that job (i.e., time spent in the 
processors queue plus job service time). 
 Parameters used in simulation computations (pre-
sented later) are shown in Table 1. 
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Table 1:  Notations 
 
� mean task service rate 

1/� mean task service demand 

� mean job arrival rate 

1/� mean job inter-arrival time 

RTs mean response time of sequential jobs 

RTg mean response time of parallel jobs 

MRTs  maximum response time of sequential jobs  

MRTg maximum response time of parallel jobs 

W mean waiting time of jobs 

Nmax maximum number of tasks per sequential job 

 
 RTs  and RTg represent the performance of sequential 
and parallel jobs respectively. MRTs and MRTg represent 
fairness in terms of individual job class service. W 
represents the overall job performance.  

 
3.  Experimental methodology 
 
 The queuing network model is simulated with discrete 
event simulation models [12] using the independent 
replication method. For every mean value, a 95% 
confidence interval is computed. All confidence intervals 
are within 5% of the mean values. 
 In the simulation experiments we defined mean task 
service demand and mean inter-arrival time as follows: 
 

1/� = 1, and 1/� = 0.280 
 
 The value 0.280 was chosen because the processors 
average 31.875 tasks per job, as the following relation 
holds: 

(1/(logP + 1))  * ∑
=

P

i

i
log

0

2 = 31.875 

 When all processors are busy, an average of 4.0157 
jobs are served each unit of time. This implies that the 
arrival rate has to be less than 4.0157, which means 1/� > 
0.249, so that the processors queue will not be saturated. 
For this reason we choose a larger mean inter-arrival time 
1/� = 0.280 that results in traffic intensity equal to 0.889.  
 We vary the maximum number of tasks per sequential 
job as follows:  
 

Nmax = 23, 22, 21 

 

which means that 25%, 37.5% and 50% of the jobs 
respectively are sequential. We are therefore able to study 
the performance of the scheduling policies for different 
job mix cases. 
 
4.  Experimental results and discussion  
 
 The following results are presented: 
 
. Figure 2 is W versus Nmax for all cases that we 

examined. 
 
. Figure 3 is the RTs and RTg versus Nmax for the AFCFS 

and AFCFS-BS cases. 
 
. Figure 4 is the MRTs and MRTg versus Nmax for the 

AFCFS and AFCFS-BS cases. 
 
. Figure 5 is the RTs and RTg versus Nmax for the LG-SS 

and LG-SS-BS cases. 
 
. Figure 6 is the MRTs and MRTg versus Nmax for the 

LG-SS and LG-SS-BS cases. 
 
. Figure 7 is the ratio RTg / RTs in the AFCFS,  AFCFS-

BS, LG-SS, and LG-SS-BS cases.  
 
. Figure 8 is the ratio  MRTg / MRTs in the AFCFS,  

AFCFS-BS, LG-SS, and LG-SS-BS cases.  
 
 The results demonstrate the following: 
 The mean processor utilization varies in the Nmax = 8, 
4, and 2 cases over the ranges of 0.53-0.81, 0.74-0.86, and 
0.80-0.88 respectively. Except for where AFCFS Nmax = 
2, utilization is higher in all other cases when blocking 
sequential tasks than in the non-blocking cases.  
 Therefore, the blocking of sequential jobs improves 
system performance. The reason is apparent. There are 
more opportunities for sequential jobs to start than for 
gangs when a processor becomes available. Also, when a 
sequential job begins execution, it occupies a processor 
on average for a longer time interval than a gang task. 
Therefore, when a gang is waiting for available 
processors, it cannot access this processor for this time 
period. This may keep some processors idle even though 
there are jobs waiting in the queue.   
 Regarding the mean waiting time of all jobs, the 
AFCFS-BS and LG-SS-BS methods perform better than 
the AFCFS and LG-SS methods respectively. This is 
because the non-blocking case accumulates gangs in the 
queue and suffers long delays. These gang delays affect 
the mean waiting time more seriously than the delays of 
sequential jobs do in the blocking cases. In all cases the 
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mean waiting time is lower in the AFCFS-BS case than in 
the LG-SS-BS case.   
 Regarding the mean response time of sequential jobs 
and of gangs, in all cases the blocking of sequential jobs 
increases RTs and decreases RTg (Figures 3, and 5). In the 
non blocking cases, RTs is smaller than RTg (with one 
exception in the LG-SS case where RTs and RTg are 
almost the same). The opposite happens in the blocking 
cases where RTs is larger than RTg. The RTg / RTs ratio in 
each one of the AFCFS, AFCFS-BS, LG-SS, and LG-SS-
BS cases is depicted in Figure 7. It is apparent from this 
Figure that in the non blocking cases, RTg is larger than 
RTs in a larger degree in the AFCFS case than in the LG-
SS case. In the blocking cases where as we already noted 
that RTg < RTs, RTg is smaller than RTs in a larger degree 
in the LG-SS-BS case than in the AFCFS-BS case.      
 Figure 8 represents the ratios MRTg / MRTs in the 
AFCFS, AFCFS-BS, LG-SS, and LG-SS-BS cases. In the 
AFCFS case MRTg is larger than MRTs. In the AFCFS-BS 
case MRTg is also larger than MRTs, but in a lesser degree 
than in the AFCFS case. In the LG-SS case for Nmax = 4, 
MRTg is larger than MRTs, while for Nmax = 8, and Nmax = 
2, MRTg is slightly smaller than MRTs. In the LG-SS-BS 
case MRTg is smaller than MRTs.  
 From Figures 4 and 6, and also from Figure 8 we 
observe that the AFCFS-BS policy is generally fairer to 
sequential and parallel job classes than the LG-SS-BS 
policy.  This is because the AFCFS-BS method in most 
cases yields lower maximum response times of both 
sequential jobs and gangs than the LG-SS-BS policy does 
(the only exception is at Nmax = 8 where gangs have lower 
MRTg in the LG-SS-BS case than in the AFCFS-BS case). 
Further to this, the maximum response times of sequential 
jobs and gangs differ between each other in a lesser 
degree in the AFCFS-BS case than in the LG-SS-BS case.  
 For Nmax = 8 the mean response time of parallel jobs is 
lower in the LG-SS-BS case than in the AFCFS-BS case 
(Figures 3, and 5). For Nmax = 4 the mean response time of 
parallel jobs is almost the same in the LG-SS-BS and 
AFCFS-BS cases.  However, for Nmax = 8, and Nmax = 4 
the sequential job mean response time is much larger in 
the LG-SS-BS case than it is in the AFCFS-BS case. 
Furthermore, as we have already noted, the LG-SS-BS 
case sequential jobs present very high MRTs as compared 
to the MRTs of the AFCFS-BS case. On the other hand, 
the difference in the maximum response time of gangs in 
the AFCFS-BS and LG-SS-BS cases is small as compared 
to the difference in the maximum response time of the 
sequential jobs in the corresponding cases.  
 For Nmax = 2, the mean response time and maximum 
response time of parallel and sequential jobs is lower in 
the AFCFS-BS case than in the LG-SS-BS case. 
However, it should be noted that sequential jobs comprise 
the 25% only of the total number of jobs in this case and 
also they have only one or two sequential tasks. 

Therefore, it is apparent that they affect the performance 
of gangs to a lesser degree than in cases where they 
represent a larger percentage of the job mix. 
 The results do not take overhead into account relating 
to the complexity of the scheduling policy employed.  The 
AFCFS-BS method is easier to implement and therefore 
involves less overhead than the LG-SS-BS method.  
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Figure 2. W versus Nmax 
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Figure 3. RTs and RTg  versus Nmax for the AFCFS 
and AFCFS-BS cases 
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Figure 4. MRTs and MRTg  versus Nmax for the 
AFCFS and AFCFS-BS cases 
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Figure 5. RTs and RTg  versus Nmax for the LG-SS 
and LG-SS-BS cases 
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Figure 6. MRTs and MRTg  versus Nmax for the LG-
SS and LG-SS-BS cases 

 
5.  Conclusions and further research  
 
 This paper studies the scheduling of sequential and 
parallel jobs in a partitionable parallel processing system. 
We use simulation as the means to generate the results 
used to compare different configurations. 
 Four scheduling policies are considered (AFCFS, LG-
SS, AFCFS-BS and LG-SS-BS). Their performance is 
simulated and the results are compared for different 
numbers of sequential and parallel jobs. The goal is to 
assure fairness in individual job class service. Simulation 
results indicate the following: 
 
. The blocking of sequential jobs improves overall 

performance and also protects gangs from excessive 
delays.   

 
. With respect to the types of job mix that we examined,  

the AFCFS-BS method should be used instead of LG-
SS-BS. This is because AFCFS-BS is easier to 
implement and in most cases performs better than LG-  
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Figure 7. Ratio RTg / RTs versus Nmax 
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Figure 8. Ratio MRTg / MRTs versus Nmax 
 
 

SS-BS regarding overall job performance and fairness 
in individual job class service.  

 
 This is a case study. Further experimentation is 
necessary to examine other cases which involve parallel 
jobs which consist of independent tasks that can execute 
at any processor and in any order along with sequential 
jobs and gangs. 
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