
Scheduling a Job Mix in a Partitionable Parallel System

Helen D. Karatza
Department of Informatics

Aristotle University of Thessaloniki
54006 Thessaloniki, Greece

karatza@csd.auth.gr

Ralph C. Hilzer
Computer Science Department

California State University, Chico
Chico, California 95929-0410 USA

hilzer@ecst.csuchico.edu

Abstract

 Efficient scheduling of jobs on parallel processors is
essential for good performance. However, design of such
schedulers is challenging because of the complex
interaction between system and workload parameters.
This paper studies the performance of a partitionable
parallel system in which job scheduling depends on job
characteristics. Jobs consist of different number of tasks
and are characterized as sequential or parallel depending
on whether the tasks are processed sequentially on the
same processor or at different processors. Jobs that
consist of parallel tasks are called gangs, that is, they have
to be scheduled to execute concurrently on processor
partitions, where each task starts at the same time and
computes at the same pace. The goal is to achieve good
performance of sequential and parallel jobs. The
performance of different scheduling schemes is compared
over various workloads. Simulated results indicate that
sequential jobs should not arbitrary overtake the
execution of parallel jobs.

1. Introduction

 The scheduling of jobs on processors of a partitionable
parallel machine is an important and challenging area.
The allocation and management of resources for these
systems is fundamental to sustaining and improving the
benefits of multiprocessing [3], and [9].
 Jobs usually have different characteristics. For
example, some jobs are comprised of sequential tasks,
while other jobs consist of multiple tasks that can be run
in parallel on different processors. It is not possible to
efficiently execute all jobs with one type of scheduler. It
is crucial to apply the proper scheduling strategy to jobs
according to their characteristics.
 In this paper we compare the effect of different job
scheduling policies operating under various workloads.
The goal is to achieve high system performance while

maintaining fairness in terms of sequential and parallel
job execution.
 Our work involves a shared memory system with 128
processors. We use a scalable, coherent shared address
space (SAS) multiprocessing system that has been the
focus of many other studies. Over the last decade, a
number of hardware cache-coherent, non-uniform
memory access architectures (so-called hardware-DSM or
CC-NUMA machines) have been implemented and shown
to perform well at a moderate scale of about 32
processors. In fact, such machines are quickly becoming
the dominant form of tightly coupled multiprocessor
machines built by commercial vendors.
 An open question is how scalable these architecture
configurations are to larger processor numbers. In [7], the
performance of a wide range of SAS parallel applications
on a 128-processor hardware cache-coherent machine (the
SGI Origin2000) is studied. It is demonstrated that
scalable performance is indeed achieved with this
programming model over a wide range of applications,
including the challenging of kernels like FFT.
 This study considers a partitionable parallel
processing system where the partitions are subsystems
allocated to independent jobs. Some of the jobs are
sequential while the remainder are parallel. Sequential
tasks run on the same processor. Parallel tasks execute
concurrently on a set of processors. The parallel tasks
start at essentially the same time, co-ordinate their
execution, and compute at the same pace. This type of
resource management is called “coscheduling” or “gang
scheduling” and is extensively studied in the literature of
parallel and distributed systems [1], [2], [4], [5], [6], [8],
[10], [11], [13], [14], and [15].
 Jobs begin execution only if enough idle processors
are available to handle them. However, a scheduling
policy is needed to determine which job is to be mapped
to the available processors. In order to achieve fairness in
terms of individual job class service, sequential jobs
should not be arbitrarily scheduled ahead of the parallel
jobs.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

 The design choices considered in this paper include
different ways to schedule sequential jobs and gangs for
service on the system processors. The performance of
different scheduling policies is compared for various
workloads. The authors have found no evidence that this
type of scheduling has previously been applied to this
system operating under these workload models.
 The scheduling of sequential jobs and gangs in a parti-
tionable parallel system was studied earlier in [10].
However, in that paper the system is a closed queuing
network with a fixed number of jobs. Furthermore, while
that paper examines only one case relating to the number
of tasks per parallel and sequential job, this one examines
various cases.
 The technique used to evaluate the performance of the
scheduling disciplines is experimentation using a
synthetic workload simulation. In studies like this, it is
usually necessary to use synthetic workloads because real
workloads cannot be simulated efficiently enough and
real systems with actual workloads are not available for
experimentation. Also, useful analytic models are difficult
to derive because subtleties that exist between various
disciplines are difficult to model and because the
workload model is quite complex.
 This paper is an experimental study in that the results
are obtained from simulation studies instead of from the
measurements of real systems. Nevertheless, the results
presented are of practical value. All of the algorithms are
practical in that they can be implemented. Although we
do not derive absolute performance values for specific
systems and workloads, we do study the relative
performance of the different algorithms across a broad
range of workloads and analyze how changes in the
workload can affect performance.
 The structure of this paper is as follows. Section 2.1
specifies system and workload models, section 2.2
describes scheduling strategies, and section 2.3 presents
the metrics employed while assessing performance of the
scheduling policies. Experimental methodology is
described in section 3, while experimental results are
presented and analyzed in section 4. Section 5 contains
conclusions and suggestions for further research.

2. Model and methodology

2.1 System and workload models

 An open queuing network model is considered that
consists of P = 128 parallel homogeneous processors.
 All processors share a single queue (memory). The ef-
fects of the memory requirements and the communication
latencies are not represented explicitly in the system mo-
del. Instead, they appear implicitly at job execution time.
 The configuration of the model is shown in Figure 1.

�

�

�

3

$)&)6

$)&)6�%6

/*�66

/*�66�%6

Figure 1. The queuing network model

 The queuing network model is implemented with
discrete event simulation. We evaluate the performance of
job scheduling algorithms under various workload
models, each of which has certain characteristics relating
to the:

. Number of job tasks.
. Interdependence of job tasks.
. The distribution of job inter-arrival time.
. The distribution of task service demand.

. Number of tasks per job

 We consider that every job x consists of tx tasks where
1 ≤ tx ≤ P. Therefore, we bind the number of tasks per job
to the number of processors in the system. The number of
tasks that make up job x is called the “size” of job x. A
job is said to be “small” (or “large”) if it consists of a
small (or large) number of tasks. The number of
processors required by job x is represented as p(x). It is
obvious that tx ≥ p(x).
 The analysis of real workload logs, collected from
many large-scale parallel computers used in production,
shows that the percentage of small jobs, with a small
number of tasks, is higher than large jobs, with a large
number of tasks. For this reason, we examine the
following distribution for the number of tasks per job.

Uniform-log model

 Job size is an integer calculated by 2i within the range
[1, P], where i is an integer in the range [0, logP]. The
probability of each value is uniform. Therefore, in our
model job sizes are 1, 2, 4, 8, 16, 32, 64, 128.

. Interdependence among tasks of a job

 We consider that the tasks of a job belong to one of
the following two categories:

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

Sequential tasks

 Job tasks have precedence constraints and have to be
processed in sequence on the same processor. Therefore,
it holds that p(x) = 1 and tx ≥ p(x).

Gangs

 Those jobs consisting of tasks that execute
concurrently on processor partitions, where each task
starts at the same time and computes at the same pace, are
called gangs. Gang scheduling executes a set of tasks
simultaneously on a set of processors. It allows tasks to
interact efficiently by busy waiting, without the risk of
waiting for a task that currently is not running. Without
gang scheduling, tasks must block in order to
synchronize, thus incurring context switch overhead. At
any time, there is a one-to-one mapping between tasks
and processors. We assume that all tasks within the same
gang execute for the same amount of time, i.e., the
computational load is balanced among them. Each job
begins execution only when a sufficient number of idle
processors are available to meet its needs. It holds that: tx
= p(x).
 Gangs x1, x2, ... xm can be executed simultaneously
with s sequential jobs, where 0 ≤ s < P, if and only if the
following relation holds:

s + ∑
=

m

i
ixp

1

)(≤ P.

 In our model, jobs that consist of 1 ≤ n ≤ Nmax tasks
are sequential, while jobs that consist of Nmax < n ≤ P
tasks are gangs. We examine different Nmax values.

. Distribution of job inter-arrival time

 We consider that job inter-arrival times are
exponential random variables with a mean of 1/�.

. Distribution of task service demand

 Service demands of tasks of sequential and parallel
jobs are exponentially distributed with a mean of 1/�.

 The sequence that jobs in the queue are served
depends on the scheduling policy. Fairness is required
across competing jobs.
 Next we describe the scheduling strategies selected for
this study. As is the case with most studies, we assume
that scheduling overhead is negligible. We also assume
that the scheduler has perfect information when making

decisions, i.e. it knows the exact number of processors
required by all jobs in the queue.

2.2 Job scheduling policies

Adapted First Come First Served (AFCFS)

 When a processor or a set of processors become idle,
all jobs in the queue are examined in sequence for
execution on the available processors. One major problem
with AFCFS is that it may introduce large queuing delays
within gangs since it favors sequential job tasks. This
problem is compensated for in the following method.

AFCFS-Blocking of Sequential Jobs (AFCFS-BS)

 When a job leaves, if the first job in the queue is a
gang and it can be scheduled, then all other jobs in the
queue are examined for execution on the remaining
available processors. If the gang cannot start on the
available processors, then only other gangs in the queue
are examined. Sequential jobs are blocked. When a
sequential job arrives and the first job in the queue is a
gang, the sequential job is blocked.

Largest Gang First Served / Shortest Sequential Job First
Served (LG-SS)

 With this method, gangs are placed in processor
queues in the order of increasing job size (larger gangs are
moved to the head of the queue). On the other hand, it is
well known that when coscheduling is not required for
tasks of jobs, shortest service time first is the optimal
method. However, in most cases, advance knowledge of
task service time is not available. For this reason, we
consider the number of tasks of a sequential job as an
indication of the cumulative service time of its constituent
tasks. Sequential jobs (groups of sequential tasks) are
placed in the queue in decreasing number of task order.

LG-SS-Blocking of Sequential Jobs (LG-SS-BS)

 This is a version of the LG-SS policy where the
blocking of sequential jobs occurs in a manner similar to
the AFCFS –BS case.

2.3 Performance metrics

 Response time of a job is the time interval from the
arrival of that job at the processors queue to the service
completion time for that job (i.e., time spent in the
processors queue plus job service time).
 Parameters used in simulation computations (pre-
sented later) are shown in Table 1.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

Table 1: Notations

� mean task service rate

1/� mean task service demand

� mean job arrival rate

1/� mean job inter-arrival time

RTs mean response time of sequential jobs

RTg mean response time of parallel jobs

MRTs maximum response time of sequential jobs

MRTg maximum response time of parallel jobs

W mean waiting time of jobs

Nmax maximum number of tasks per sequential job

 RTs and RTg represent the performance of sequential
and parallel jobs respectively. MRTs and MRTg represent
fairness in terms of individual job class service. W
represents the overall job performance.

3. Experimental methodology

 The queuing network model is simulated with discrete
event simulation models [12] using the independent
replication method. For every mean value, a 95%
confidence interval is computed. All confidence intervals
are within 5% of the mean values.
 In the simulation experiments we defined mean task
service demand and mean inter-arrival time as follows:

1/� = 1, and 1/� = 0.280

 The value 0.280 was chosen because the processors
average 31.875 tasks per job, as the following relation
holds:

(1/(logP + 1)) * ∑
=

P

i

i
log

0

2 = 31.875

 When all processors are busy, an average of 4.0157
jobs are served each unit of time. This implies that the
arrival rate has to be less than 4.0157, which means 1/� >
0.249, so that the processors queue will not be saturated.
For this reason we choose a larger mean inter-arrival time
1/� = 0.280 that results in traffic intensity equal to 0.889.
 We vary the maximum number of tasks per sequential
job as follows:

Nmax = 23, 22, 21

which means that 25%, 37.5% and 50% of the jobs
respectively are sequential. We are therefore able to study
the performance of the scheduling policies for different
job mix cases.

4. Experimental results and discussion

 The following results are presented:

. Figure 2 is W versus Nmax for all cases that we

examined.

. Figure 3 is the RTs and RTg versus Nmax for the AFCFS

and AFCFS-BS cases.

. Figure 4 is the MRTs and MRTg versus Nmax for the

AFCFS and AFCFS-BS cases.

. Figure 5 is the RTs and RTg versus Nmax for the LG-SS

and LG-SS-BS cases.

. Figure 6 is the MRTs and MRTg versus Nmax for the

LG-SS and LG-SS-BS cases.

. Figure 7 is the ratio RTg / RTs in the AFCFS, AFCFS-

BS, LG-SS, and LG-SS-BS cases.

. Figure 8 is the ratio MRTg / MRTs in the AFCFS,

AFCFS-BS, LG-SS, and LG-SS-BS cases.

 The results demonstrate the following:
 The mean processor utilization varies in the Nmax = 8,
4, and 2 cases over the ranges of 0.53-0.81, 0.74-0.86, and
0.80-0.88 respectively. Except for where AFCFS Nmax =
2, utilization is higher in all other cases when blocking
sequential tasks than in the non-blocking cases.
 Therefore, the blocking of sequential jobs improves
system performance. The reason is apparent. There are
more opportunities for sequential jobs to start than for
gangs when a processor becomes available. Also, when a
sequential job begins execution, it occupies a processor
on average for a longer time interval than a gang task.
Therefore, when a gang is waiting for available
processors, it cannot access this processor for this time
period. This may keep some processors idle even though
there are jobs waiting in the queue.
 Regarding the mean waiting time of all jobs, the
AFCFS-BS and LG-SS-BS methods perform better than
the AFCFS and LG-SS methods respectively. This is
because the non-blocking case accumulates gangs in the
queue and suffers long delays. These gang delays affect
the mean waiting time more seriously than the delays of
sequential jobs do in the blocking cases. In all cases the

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

mean waiting time is lower in the AFCFS-BS case than in
the LG-SS-BS case.
 Regarding the mean response time of sequential jobs
and of gangs, in all cases the blocking of sequential jobs
increases RTs and decreases RTg (Figures 3, and 5). In the
non blocking cases, RTs is smaller than RTg (with one
exception in the LG-SS case where RTs and RTg are
almost the same). The opposite happens in the blocking
cases where RTs is larger than RTg. The RTg / RTs ratio in
each one of the AFCFS, AFCFS-BS, LG-SS, and LG-SS-
BS cases is depicted in Figure 7. It is apparent from this
Figure that in the non blocking cases, RTg is larger than
RTs in a larger degree in the AFCFS case than in the LG-
SS case. In the blocking cases where as we already noted
that RTg < RTs, RTg is smaller than RTs in a larger degree
in the LG-SS-BS case than in the AFCFS-BS case.
 Figure 8 represents the ratios MRTg / MRTs in the
AFCFS, AFCFS-BS, LG-SS, and LG-SS-BS cases. In the
AFCFS case MRTg is larger than MRTs. In the AFCFS-BS
case MRTg is also larger than MRTs, but in a lesser degree
than in the AFCFS case. In the LG-SS case for Nmax = 4,
MRTg is larger than MRTs, while for Nmax = 8, and Nmax =
2, MRTg is slightly smaller than MRTs. In the LG-SS-BS
case MRTg is smaller than MRTs.
 From Figures 4 and 6, and also from Figure 8 we
observe that the AFCFS-BS policy is generally fairer to
sequential and parallel job classes than the LG-SS-BS
policy. This is because the AFCFS-BS method in most
cases yields lower maximum response times of both
sequential jobs and gangs than the LG-SS-BS policy does
(the only exception is at Nmax = 8 where gangs have lower
MRTg in the LG-SS-BS case than in the AFCFS-BS case).
Further to this, the maximum response times of sequential
jobs and gangs differ between each other in a lesser
degree in the AFCFS-BS case than in the LG-SS-BS case.
 For Nmax = 8 the mean response time of parallel jobs is
lower in the LG-SS-BS case than in the AFCFS-BS case
(Figures 3, and 5). For Nmax = 4 the mean response time of
parallel jobs is almost the same in the LG-SS-BS and
AFCFS-BS cases. However, for Nmax = 8, and Nmax = 4
the sequential job mean response time is much larger in
the LG-SS-BS case than it is in the AFCFS-BS case.
Furthermore, as we have already noted, the LG-SS-BS
case sequential jobs present very high MRTs as compared
to the MRTs of the AFCFS-BS case. On the other hand,
the difference in the maximum response time of gangs in
the AFCFS-BS and LG-SS-BS cases is small as compared
to the difference in the maximum response time of the
sequential jobs in the corresponding cases.
 For Nmax = 2, the mean response time and maximum
response time of parallel and sequential jobs is lower in
the AFCFS-BS case than in the LG-SS-BS case.
However, it should be noted that sequential jobs comprise
the 25% only of the total number of jobs in this case and
also they have only one or two sequential tasks.

Therefore, it is apparent that they affect the performance
of gangs to a lesser degree than in cases where they
represent a larger percentage of the job mix.
 The results do not take overhead into account relating
to the complexity of the scheduling policy employed. The
AFCFS-BS method is easier to implement and therefore
involves less overhead than the LG-SS-BS method.

8 4 2
0

10

20

30

40

50

60

AFCFS AFCFS-BS LG-SS LG-SS-BS

W

Nmax

Figure 2. W versus Nmax

8 4 2
0

10

20

30

40

50

60

70

AFCFS(s) AFCFS(g) AFCFS-BS(s) AFCFS-BS(g)

RTs, RTg

Nmax

Figure 3. RTs and RTg versus Nmax for the AFCFS
and AFCFS-BS cases

8 4 2
0

100

200

300

400

500

AFCFS(s) AFCFS(g) AFCFS-BS(s) AFCFS-BS(g)

MRTs, MRTg

Nmax

Figure 4. MRTs and MRTg versus Nmax for the
AFCFS and AFCFS-BS cases

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

8 4 2
0

10

20

30

40

50

60

70

LG-SS(s) LG-SS(g) LG-SS-BS(s) LG-SS-BS(g)

RTs, RTg

Nmax

Figure 5. RTs and RTg versus Nmax for the LG-SS
and LG-SS-BS cases

8 4 2
0

100

200

300

400

500

LG-SS(s) LG-SS(g) LG-SS-BS(s) LG-SS-BS(g)

MRTs, MRTg

Nmax

Figure 6. MRTs and MRTg versus Nmax for the LG-
SS and LG-SS-BS cases

5. Conclusions and further research

 This paper studies the scheduling of sequential and
parallel jobs in a partitionable parallel processing system.
We use simulation as the means to generate the results
used to compare different configurations.
 Four scheduling policies are considered (AFCFS, LG-
SS, AFCFS-BS and LG-SS-BS). Their performance is
simulated and the results are compared for different
numbers of sequential and parallel jobs. The goal is to
assure fairness in individual job class service. Simulation
results indicate the following:

. The blocking of sequential jobs improves overall

performance and also protects gangs from excessive
delays.

. With respect to the types of job mix that we examined,

the AFCFS-BS method should be used instead of LG-
SS-BS. This is because AFCFS-BS is easier to
implement and in most cases performs better than LG-

8 4 2
0

0,5

1

1,5

2

2,5

3

AFCFS AFCFS-BS LG-SS LG-SS-BS

RTg / RTs

Nmax

Figure 7. Ratio RTg / RTs versus Nmax

8 4 2
0

0,5

1

1,5

2

2,5

AFCFS AFCFS-BS LG-SS LG-SS-BS

Nmax

MRTg / MRTs

Figure 8. Ratio MRTg / MRTs versus Nmax

SS-BS regarding overall job performance and fairness
in individual job class service.

 This is a case study. Further experimentation is
necessary to examine other cases which involve parallel
jobs which consist of independent tasks that can execute
at any processor and in any order along with sequential
jobs and gangs.

References

[1] K. Aida 2000, “Effect of Job Size Characteristics on Job
Scheduling Performance”, In Job Scheduling Strategies for
Parallel Processing, Lecture Notes in Computer Science, D.G.
Feitelson and L. Rudolph (eds.), Springer-Verlang, Berlin,
Germany, 1997, Vol. 1911, pp. 1-10.

[2] K. Aida, H. Kasahara, and S. Narita, “Job Scheduling
Scheme for Pure Space Sharing among Rigid Jobs”, In Job
Scheduling Strategies for Parallel Processing, Lecture Notes in
Computer Science, D.G. Feitelson and L. Rudolph (eds.),
Springer-Verlang, Berlin, Germany, 1998, Vol. 1459, pp. 98-
121.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

[3] L.W. Dowdy, E. Rosti, G. Serazzi, and E. Smirni,
“Scheduling Issues in High-Performance Computing”,
Performance Evaluation Review, ACM, New York, USA, Vol.
26 (4), 1999, pp. 60-69.

[4] D.G. Feitelson, and M. A. Jette, “Improved Utilization and
Responsiveness with Gang Scheduling”, In Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer
Science, D.G. Feitelson and L. Rudolph (eds.), Springer-
Verlang, Berlin, Germany, 1997, Vol. 1291, pp. 238-261.

[5] D.G. Feitelson, and L. Rudolph, “Parallel job scheduling:
issues and approaches”. In Job Scheduling Strategies for
Parallel Processing, Lecture Notes in Computer Science, D.G.
Feitelson and L. Rudolph (eds.), Springer-Verlang, Berlin,
Germany, 1995, Vol. 949, pp. 1-18.

[6] D.G. Feitelson, and L. Rudolph, “Coscheduling Based on
Runtime Identification of Activity Working Sets”, International
Journal of Parallel Programming, Kluwer/Plenum, New York,
USA, 1995, Vol. 23 (2), pp. 135-160.

[7] D. Jiang, and J. Pal Singh, “Scaling Application Performance
on Cache-Coherent Multiprocessors”, Performance Evaluation
Review, ACM, New York, USA, 1998, Vol. 26 (1), pp. 171-181.

[8] H.D. Karatza, “Gang Scheduling and I/O Scheduling in a
Multiprocessor System”, In Proceedings of 2000 Symposium on
Performance Evaluation of Computer and Telecommunication
Systems, M.S. Obaidat, F. Davoli and M.A. Marsan (eds.), SCS,
Vancouver, Canada, July 2000, pp. 245-252.

[9] H.D. Karatza, “A Simulation Based Performance Analysis of
Scheduling in a Parallel System”, In Proceedings of 12th
European Simulation Symposium and Exhibition, SCS Europe,
Hambourg, Germany, September 2000, pp. 582-586.

[10] H.D. Karatza, “Scheduling Jobs with Different Chara-
cteristics in a Partitionable Parallel System”, In Proceedings of
the UKSim 2001 Conference, UK Simulation Society,
Cambridge, England, March 28-30, 2001, pp. 223-229.

[11] H.D. Karatza, and I.D. Scherson, “Scheduling Job Classes
in a Distributed System”. In Proceedings of SPECTS'2001, 2001
SCS Symposium on Performance Evaluation of Computer and
Telecommunication Systems, SCS, Orlando, Florida, July 2001,
pp. 322-329.

[12] Law, A., and D. Kelton, Simulation Modeling and Analysis,
2nd Ed., McGraw-Hill, Inc, New York, USA, 1991.

[13] S.K. Setia, “Trace-Driven Analysis of Migration-Based
Gang Scheduling Policies for Parallel Computers”, In
Proceedings of the International Conference on Parallel
Processing, IEEE Computer Society, Bloomingdale, USA,
August 1997, pp. 489-492.

[14] F. Silva, and I.D. Scherson, “Improving Throughput and
Utilization in Parallel Machines Through Concurrent Gang”, In
Proceedings of the IEEE International Parallel and Distributed
Processing Symposium 2000, IEEE Computer Society, Cancun,
Mexico, May 2000, pp. 121-126.

[15] F. Wang, M. Papaefthymiou, and M. Squillante,
“Performance Evaluation of Gang Scheduling for Parallel and
Distributed Systems”, In Job Scheduling Strategies for Parallel
Processing, Lecture Notes in Computer Science, D.G. Feitelson
and L. Rudolph (eds.), Springer-Verlang, Berlin, Germany,
1997, Vol. 1291, pp. 184-195.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

