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Abstract 
 
 Clusters of workstations have emerged as a cost-
effective solution to high performance computing 
problem. To take advantage of any opportunities, 
however, effective scheduling techniques are necessary 
that enable parallel applications to dynamically share 
workstations with their owners. In this paper a special 
type of parallel applications called gangs are considered. 
Gangs are jobs that consist of a number of interacting 
tasks scheduled to run simultaneously on separate and 
distinct processors. A simulation model is used to address 
performance issues associated with gang scheduling on a 
non-dedicated workstation cluster for various workloads. 
Simulated results indicate that the relative performance of 
the gang scheduling policies that we examine depends on 
the workload characteristics.    
 
     
1. Introduction 
 
 Clusters of workstations (COWs) are cost-effective 
platforms for parallel computation. The scheduling of 
parallel jobs on COWs is very important. However, most 
existing scheduling policies on multiprocessor / multi-
computer systems are not appropriate because of the 
heterogeneous and non-dedicated features of many 
COWs.  
 Clusters are gaining acceptance not only in scientific 
applications that need supercomputing power, but also in 
domains such as databases, web service and multimedia, 
which place diverse Quality-of-Service (QoS) demands 
on the underlying system. 
 Resource management and scheduling on workstation 
clusters is complicated by the fact that the number of idle 
workstations available to execute parallel applications is 
constantly fluctuating.  
 Several resource management and scheduling issues 
arise when using COWS for parallel computing that have 

no counterpart in traditional parallel systems. Most of 
these issues arise due to the fact that workstations are 
typically “owned” by a user who may resent the presence 
of an external parallel computation on his or her 
computer. It has also been demonstrated that parallel 
applications need a dedicated environment to produce 
good performance. In order to keep workstations owners 
happy, it is necessary to ensure that parallel applications 
execute only on idle workstations. 
 It is not obvious how to effectively allocate nodes of a 
COW among competing jobs. One idea is to use gang 
scheduling. Gang scheduling allows tasks to interact 
efficiently by busy waiting, without the risk of waiting on 
a task that is currently not running. Without gang 
scheduling, tasks must block in order to synchronize, thus 
incurring context switch overhead.  
 Code to simultaneously schedule all tasks of each gang 
could be extremely complex, and require elaborate 
bookkeeping and global system knowledge. Because gang 
scheduling requires that no task execute unless all other 
gang member tasks also execute, some processors may be 
idle even when there are tasks waiting for processors. 
 With gang scheduling, there is always a one-to-one 
mapping between tasks and processors. Although the total 
number of tasks in the system may be larger that the 
number of processors, no gang contains more tasks than 
the number of available processors. We assume that all 
tasks within the same gang execute for the same amount 
of time, i.e. that the computational load is balanced 
between them. 
 A number of gang scheduling policies for distributed 
systems and multiprogrammed parallel systems have been 
proposed, each differing in the way resources are shared 
among the jobs [2], [3], [4], [5], [6], [8], [9], [10], and 
[11].  
 We study gang scheduling in an open queuing network 
that models a cluster of non-dedicated workstations 
incorporating workstation owner activities. The 
performance of two gang-scheduling policies are 
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compared operating under various workloads. The 
allocation of a set of processors to a gang is assumed to be 
static and it does not change during its execution. To our 
knowledge, the analysis of this type of gang scheduling in 
non-dedicated workstations does not appear elsewhere in 
the research literature. 
 Non-dedicated clusters of workstations have been 
studied by [1]. However, that paper considers a different 
type of parallel job scheduling, since processor allocation 
of executing parallel jobs is reconfigured and changed.  
 The structure of this paper is as follows. Section 2.1 
introduces the proposed system and workload models used 
to implement it, section 2.2 describes the scheduling 
policies and section 2.3 presents the metrics used to assess 
the performance of the scheduling policies. The model 
implementation and its input parameters are described in 
section 3.1, while simulation results are both presented 
and analysed in section 3.2. Finally, section 4 summarizes 
the paper and provides recommendations for further 
research. 
 
2. Model and methodology 
 
2.1 System and workload models 
 
 This paper uses a simulation model to address gang 
scheduling issues. An open queuing network model of a 
COW is considered. P = 16 homogeneous workstations 
are available, each serving its own queue. A high-speed 
network connects the distributed nodes. This is a 
representative model for many existing departmental 
COWs. 
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Figure 1. The queuing network model 

 
 The number of tasks in a job x is the job’s degree of 
parallelism and it is represented as t(x). If p(x) represents 
the number of processors required by job x, then the 
following relationship holds: 
 

1 ≤ t(x) = p(x) ≤ P 
 
 The number of tasks in a job x is called the “size” of 
job x. We call a job “small” (“large”) if it requires a small 
(large) number of processors. The degree of parallelism is 
constant over the lifetime of system jobs.  
 We assume that the number of job tasks is uniformly 
distributed in the range of [1..P]. Therefore, the mean 
number of tasks per job is equal to the � = (1+P)/2. 
 Each task of job x is routed to a different processor for 
execution. The routing policy is based on the criteria  
“join the shortest queue” and is defined as follows:  
 
 
Let: 
 
* n_assigned = number of tasks of job x that have been 

already assigned to a processor. 
 
Then: 
 
* n_assigned = 0;  

* While n_assigned < t(x) do 

*  Begin 

*  n_processors = P – n_assigned; 

*  Select the shortest of the n_processor queues; 

*  n_assigned = n_assigned + 1; 

*  i =  n_assigned; 

*  Assign the selected processor to the ith task of job x; 

*  Remove this processor from the set of candidate 
processors for the next task assignment of job x 

* End. 

 
 
 Tasks in processor queues are examined in an order 
determined by the scheduling policy that is employed. Job 
x starts to execute only if all p(x) processors assigned to it 
are available. Otherwise, all job x tasks wait in their 
assigned queues. When a job terminates execution, all 
processors assigned to it are released.  
 An important issue that arises in cluster environments 
is the need to handle owner activities on a subset of the 
nodes involved in a parallel computation. Therefore, a 
mechanism is needed to deal with the fact that underlying 
resources available to a parallel computation are 
changing. 
 The fluctuating processing capacity of a non-dedicated 
cluster of workstations poses several challenging 
problems for the job scheduler. The scheduler must give 
priority to owners, and at the same time provide good 
performance to multiple batch parallel applications that 
are trying to scavenge idle cycles from the cluster.   
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 We consider that the job scheduler interrupts a parallel 
computation on a workstation upon detecting owner 
activity. The remaining processors that are assigned to the 
interrupted job can serve tasks of other gangs that are 
waiting at these processor queues.  
 Our research attempts to enhance system performance 
in terms of the mean response time for gangs assuming 
that owner jobs are served immediately.   
 When an owner job arrives during the execution of a 
gang task, all work that was performed on all tasks 
associated with that gang must be redone. The tasks of an 
interrupted gang are rescheduled for execution at the head 
of their assigned queues.  
 The technique used to evaluate the performance of the 
scheduling disciplines is experimentation using a 
synthetic workload simulation.  
 The workload considered here is characterized by 
three parameters:  
 
. The distribution of gang service demand.  
 
. The distribution of workstation owner job service 

demand.  
 
. The mean inter-arrival time of gangs.  
 
. The mean inter-arrival time of workstation owner 

jobs.  
 
 Gang and workstation owner job service demands are 
exponentially distributed with means of 1/� and 1/�′ res-
pectively.  
 We consider two arrival streams, one for gangs and 
one for workstation owners. The inter-arrival times of 
gangs and workstation owners are exponential random 
variables with means of 1/�, and 1/�′ respectively.   
 All notations used in this paper appear in Table 1. 
 In order to define an algorithm that assigns owner jobs 
to their respective processors, we consider the following 
mechanism:  
 On an owner arrival, one of the P workstations is 
selected randomly and if it is idle or it serves a task of a 
gang, we assume the job that just arrived belongs to this 
workstation owner. Otherwise, another workstation is 
selected randomly from among the remaining P-1 
processors and so on. In the experiments that we conduct, 
values of �′ are chosen that do not result in further owner 
arrivals in cases where all workstations are occupied by 
their owners.  
   
2.2 Job scheduling policies 
 
 It is assumed that the scheduler has comprehensive 
information available when making decisions, i.e. it 

knows the exact number of processors required by each 
job. The following two scheduling strategies are 
employed in our simulations:  
 
. Adapted-First-Come-First-Served (AFCFS). This me-
thod attempts to schedule a job whenever processors 
assigned to its tasks are available. When there are not 
enough processors available for a large job whose tasks 
are waiting in the front of the queues, AFCFS policy 
schedules smaller jobs whose tasks are behind the tasks of 
the large job.  
 One major problem with this scheduling policy is that 
it tends to favor jobs requiring a smaller number of 
processors and thus may increase fragmentation of the 
system. 
 
. Largest-Gang-First-Served (LGFS). With this policy 
tasks are placed in increasing job size order in processor 
queues (tasks that belong to larger gangs are placed at the 
head of queues). All tasks in queues are searched in order, 
and the first jobs whose assigned processors are available 
begin execution.  
 This method tends to improve the performance of 
large, highly parallel jobs at the expense of smaller jobs, 
but in many computing environments this discrimination 
is acceptable, if not desirable. For example, supercom-
puters often run large, highly parallel jobs that cannot run 
elsewhere. 
 
 When a gang is interrupted due to owner arrival, all 
tasks of that gang are resubmitted for execution as the 
leading tasks in their assigned queues. They wait at the 
head of the ready queues until all processors allocated to 
this job are available. The remaining processors assigned 
to the interrupted job execute tasks of other jobs waiting 
in their queues.  
 When the owner task terminates, the interrupted job 
likely does not resume execution immediately as some of 
processors assigned to it may be working on other jobs. 
Those jobs will not terminate at the same time so it is 
impossible for the interrupted job to use them efficiently. 
 Note also that when an owner arrives at a workstation, 
it is not only the tasks of this workstation queue that are 
delayed, but also tasks in other workstation queues that 
have a sibling task waiting for service in the same queue. 
The larger the owner job service, the higher the 
probability that some gangs will have long delay if one of 
their tasks is at that workstation queue.  
 
2.3 Performance metrics 
 
 We define gang response time as the interval from the 
dispatching of this job tasks to processor queues to service 
completion of this job (time spent in processor queues 
plus time spent in service).  
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 Parameters used in simulation computations (pre-
sented later) are shown in Table 1. 
 

Table 1. Notations 
 

P number of processors 

U mean processor utilisation 

� mean gang service rate 

1/� mean gang service demand 

�′ mean workstation owner job service rate 

1/�′ mean workstation owner job service demand 

� mean arrival rate of gangs 

�′ mean arrival rate of workstation owner jobs 

RT mean response time of gangs 

RT ratio the ratio of RT in the LGFS case over RT in 
the AFCFS case 

 
 The relative performance of the two scheduling 
policies that we consider is measured by the RT ratio. 

 
3.  Simulation results and discussion 
 
3.1 Model implementation and input parameters 
   
 The queuing network model described above is 
implemented with discrete event simulation [7] using the 
independent replication method.  
 For every mean value, a 95% confidence interval is 
evaluated. All confidence intervals are less than 5% of the 
mean values.  
 With regard to gangs and workstation owners arrival 
rates, two set of experiments were carried out: 
 
.  In the first set, for gang mean inter-arrival time 1/� = 

1, and for 1/� = 1/�′ = 1, we vary the mean inter-
arrival time of the workstation owners as follows: 1/�′ 
= 1, 0.8, 0.6, and 0.4. We are therefore able to 
consider cases where owner activities occur with 
different frequencies over time.  

 
. In the second set of experiments, we consider 1/� = 1, 

and we study three cases for the mean inter-arrival 
time of gangs: 1/� = 1, 0.8, and 0.6. In each of these 
cases we study the following combinations of mean 
inter-arrival time – mean service demand of 
workstation owners: (1/�′ = 1, 1/�′ = 1), (1/�′ = 2, 1/�′ 
= 2), (1/�′ = 4, 1/�′ = 4), and (1/�′ = 8, 1/�′ = 8). We 
are therefore able to study for various cases of �, the 

impact of the frequency and the duration of owner 
activities on gang’s performance.      

 
 It should be noted that there are on average 8.5 tasks 
per parallel job ((P+1)/2). So, if we do not consider owner 
jobs and all processors are busy due to gang service, then 
an average of P / 8.5 = 1.88235 parallel jobs can be 
served each unit of time. This implies that we should 
choose a � < 1.88235.  
 However, due to owner activity, the number of 
processors that are available to gang service is [P – 
(�′/�′)]. Therefore, we have to choose a value of � for 
which the following relationship holds:  

 
�  < [P – (�′/�′)] / 8.5 

 
3.2  Performance analysis  
 
 Due to space considerations, the following partial 
results are presented.  The results describe overall relative 
performance of the two different scheduling policies very 
accurately.  
 Figures 2-5 are RT and RT ratio versus 1/ �′. Figures 
6-7 are U versus 1/ �′. Tables 2-5 present U in all cases 
that we examined. Simulation results indicate the 
following: 
 
a. Performance with regard to mean response time of 
gangs 
 
First set of experiments: Figures 2 - 3 show that for all 
arrival rates of workstation owner jobs the LGFS method 
yields lower mean response time than AFCFS. The 
difference in performance between the two policies is 
higher in the case where the inter-arrival time of the 
workstation owner jobs is equal to the inter-arrival time of 
gangs. As the arrival rate of workstation owner jobs 
increases, the difference in performance decreases and 
tends to be constant for 1/�′ < 0.8. This is due to the 
following: The higher the arrival rate of workstation 
owner jobs is, the greater is the possibility that fewer 
processors are available for gang service. Therefore, the 
potential of the LGFS policy is not completely exploited, 
as large gangs cannot find enough idle processors to serve 
them.  
 We can also observe a sharp increase in the response 
time of gangs where 1/�′ < 0.8. In this case, both  
scheduling policies yield very high mean gang response 
time as compared with the mean gang service time. This 
means that the mean number of processors that are 
available to serve gangs has to be greater than 14.33, in 
order for gangs to have acceptable performance.   
 
 

Proceedings of the 35th Annual Simulation Symposium (SS�02) 
1080-241X/02 $17.00 © 2002 IEEE 



 

�

�

�

�

�

�

�

�

1 1.2 1.4 1.6

���


0

30

60

90

120

150

180

RT

AFCFS LGFS� �

1,0 0,8 0,6 0,4

 
 

Figure 2. RT versus 1/�′ (1/� = 1, � = �′ = 1) 
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Figure 3. RT ratio versus 1/�′, (1/� = 1, � = �′ = 1) 
 
Second set of experiments: In these experiments we 
consider various cases where the mean inter-arrival rate of 
workstation owner jobs is equal to their mean service rate. 
These cases are studied for different gang mean inter-
arrival time. Figures 4 - 5 show that in most cases of gang 
mean inter-arrival time that we examined, overall 
performance is superior with the LGFS method in terms 
of mean response time.  
 However, when 1/� = 0.6 (� =1.67), with either 
scheduling method RT is very high as compared with the 
1/� =1, and 1/� = 0.8 cases. This is because more gangs 
delay in processor queues when mean gang arrival rate is 
equal to 1.67 than when it is smaller. Further to this, since 
workstation owner jobs have higher priority as compared 
to gangs, when they block a gang they not only influence 
the performance of the current gang, but also affect the 
performance of subsequent gangs. When a workstation 
occupied by its owner is released, some of the processors 
assigned to the interrupted job may already have served 
other jobs. Those jobs will not finish at the same time, so 
their processors are not used efficiently. 

 In Figure 5 we observe that for all �′, the superiority of 
the LGFS method over the AFCFS policy increases as 1/� 
decreases from 1 to 0.8. This is because the advantages of 
the LGFS case are exploited better when there are a 
sufficient number of gangs in the queues so that they can 
be selected according to the LGFS criteria. However, the 
difference in performance decreases with a further 
decrease of 1/� from 0.8 to 0.6. This is because high loads 
cause queuing delays of gangs with either scheduling 
method. Especially for 1/� = 0.6, and 1/�′ = 1/�′= 2 the 
two policies produce almost the same RT. Therefore, if 
overhead is considered, in this case AFCFS is preferred as 
it results in less overheard.  
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Figure 4. RT versus 1/�′, (� = 1, �′ = �′) 
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Figure 5. RT ratio versus 1/�′, (� = 1, �′ = �′) 
 
b. Performance with regard to mean processor 
utilization 
  
 In most cases the mean processor utilization is higher 
with the LGFS policy than with AFCFS (Tables 2-5, 
Figures 6-7). However, with both policies, part of the 
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processor utilization is comprised of repeated gang work, 
caused by workstation owner arrivals. The repeat work 
depends on the number of tasks in the gang, the task 
service demand, and the work that has already been 
accomplished by the gang at the moment of interruption. 
It is possible for a gang to be interrupted many times over 
the period of its execution. This would be caused by 
multiple owner arrivals at different workstations serving 
tasks of this gang.  
 In Tables 4-5, and in Figure 7 it is shown that for any 
�′ the largest difference in processor utilization between 
the two policies appears for 1/� = 0.6. However, as we 
have already noted, an increase in processor utilization 
does not necessarily mean performance improvement.  
 
 
Table 2. Mean processor utilization, AFCFS case,  

(1/� = 1, � = �′ = 1) 

 1/�′= 1 1/�′= 0.8 1/�′= 0.6 1/�′= 0.4 

1/� = 1  1/�′= 1   

1/� = 1 0.588 0.588 0.602 0.598 

 
 
Table 3. Mean processor utilization, LGFS case,  

(1/� = 1, � = �′ = 1) 

 1/�′= 1 1/�′= 0.8 1/�′= 0.6 1/�′= 0.4 

1/� = 1  1/�′= 1   

1/� = 1 0.577 0.610 0.617 0.617 

 
 
Table 4. Mean processor utilization, AFCFS case,  

(� = 1, �′ = �′) 

 1/�′= 1 1/�′= 2 1/�′= 4 1/�′= 8 

1/� = 1  �′ = �′   

1/� 1.0 

1/� 0.8   

1/� 0.6   

0.588 

0.681 

0.739 

0.581 

0.701 

0.746 

0.579 

0.693 

0.746 

0.587 

0.692 

0.750 

 

Table 5. Mean processor utilization, LGFS case,  
(� = 1, �′ = �′) 

 1/�′= 1 1/�′= 2 1/�′= 4 1/�′= 8 

� = 1  �′ = �′   

1/� 1.0 

1/� 0.8 

1/� 0.6   

0.577 

0.700 

0.826 

0.586 

0.706 

0.837 

0.573 

0.701 

0.835 

0.587 

0.699 

0.833 
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Figure 6. U versus 1/�′, (1/� = 1, � = �′ = 1) 
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Figure 7. U versus 1/�′, (� = 1, �′ = �′) 
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 4.  Conclusions and further research  
 
 This paper examines the performance of two gang  
scheduling policies in a non-dedicated workstation 
cluster. A simulation model is used to address 
performance issues associated with gang scheduling for 
various workloads.  
 
The following is a summary of the simulation results: 
 

. In most cases that we examined, the Largest-Gang-
First-Served (LGFS) method outperforms the 
Adapted – First – Come – First – Served (AFCFS) 
policy.  

 

. The relative performance of the two gang scheduling 
policies depends on the workload characteristics.   

 

. With respect to scheduling overhead, in those cases 
where performance of the two methods does not 
differ significantly, the AFCFS method is preferred, 
as it is easier to implement.  

 
 This paper is a case study. It can be extended to the 
case where after an owner departs, the interrupted parallel 
job can restart from an intermediate checkpoint. This 
requires the periodic saving of each task’s internal state.  
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