
Gang Scheduling Performance on a Cluster of Non-Dedicated
Workstations

Helen D. Karatza
Department of Informatics

Aristotle University of Thessaloniki
54006 Thessaloniki, Greece

karatza@csd.auth.gr

Abstract

 Clusters of workstations have emerged as a cost-
effective solution to high performance computing
problem. To take advantage of any opportunities,
however, effective scheduling techniques are necessary
that enable parallel applications to dynamically share
workstations with their owners. In this paper a special
type of parallel applications called gangs are considered.
Gangs are jobs that consist of a number of interacting
tasks scheduled to run simultaneously on separate and
distinct processors. A simulation model is used to address
performance issues associated with gang scheduling on a
non-dedicated workstation cluster for various workloads.
Simulated results indicate that the relative performance of
the gang scheduling policies that we examine depends on
the workload characteristics.

1. Introduction

 Clusters of workstations (COWs) are cost-effective
platforms for parallel computation. The scheduling of
parallel jobs on COWs is very important. However, most
existing scheduling policies on multiprocessor / multi-
computer systems are not appropriate because of the
heterogeneous and non-dedicated features of many
COWs.
 Clusters are gaining acceptance not only in scientific
applications that need supercomputing power, but also in
domains such as databases, web service and multimedia,
which place diverse Quality-of-Service (QoS) demands
on the underlying system.
 Resource management and scheduling on workstation
clusters is complicated by the fact that the number of idle
workstations available to execute parallel applications is
constantly fluctuating.
 Several resource management and scheduling issues
arise when using COWS for parallel computing that have

no counterpart in traditional parallel systems. Most of
these issues arise due to the fact that workstations are
typically “owned” by a user who may resent the presence
of an external parallel computation on his or her
computer. It has also been demonstrated that parallel
applications need a dedicated environment to produce
good performance. In order to keep workstations owners
happy, it is necessary to ensure that parallel applications
execute only on idle workstations.
 It is not obvious how to effectively allocate nodes of a
COW among competing jobs. One idea is to use gang
scheduling. Gang scheduling allows tasks to interact
efficiently by busy waiting, without the risk of waiting on
a task that is currently not running. Without gang
scheduling, tasks must block in order to synchronize, thus
incurring context switch overhead.
 Code to simultaneously schedule all tasks of each gang
could be extremely complex, and require elaborate
bookkeeping and global system knowledge. Because gang
scheduling requires that no task execute unless all other
gang member tasks also execute, some processors may be
idle even when there are tasks waiting for processors.
 With gang scheduling, there is always a one-to-one
mapping between tasks and processors. Although the total
number of tasks in the system may be larger that the
number of processors, no gang contains more tasks than
the number of available processors. We assume that all
tasks within the same gang execute for the same amount
of time, i.e. that the computational load is balanced
between them.
 A number of gang scheduling policies for distributed
systems and multiprogrammed parallel systems have been
proposed, each differing in the way resources are shared
among the jobs [2], [3], [4], [5], [6], [8], [9], [10], and
[11].
 We study gang scheduling in an open queuing network
that models a cluster of non-dedicated workstations
incorporating workstation owner activities. The
performance of two gang-scheduling policies are

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

compared operating under various workloads. The
allocation of a set of processors to a gang is assumed to be
static and it does not change during its execution. To our
knowledge, the analysis of this type of gang scheduling in
non-dedicated workstations does not appear elsewhere in
the research literature.
 Non-dedicated clusters of workstations have been
studied by [1]. However, that paper considers a different
type of parallel job scheduling, since processor allocation
of executing parallel jobs is reconfigured and changed.
 The structure of this paper is as follows. Section 2.1
introduces the proposed system and workload models used
to implement it, section 2.2 describes the scheduling
policies and section 2.3 presents the metrics used to assess
the performance of the scheduling policies. The model
implementation and its input parameters are described in
section 3.1, while simulation results are both presented
and analysed in section 3.2. Finally, section 4 summarizes
the paper and provides recommendations for further
research.

2. Model and methodology

2.1 System and workload models

 This paper uses a simulation model to address gang
scheduling issues. An open queuing network model of a
COW is considered. P = 16 homogeneous workstations
are available, each serving its own queue. A high-speed
network connects the distributed nodes. This is a
representative model for many existing departmental
COWs.

�

�

3

�

�¶

Figure 1. The queuing network model

 The number of tasks in a job x is the job’s degree of
parallelism and it is represented as t(x). If p(x) represents
the number of processors required by job x, then the
following relationship holds:

1 ≤ t(x) = p(x) ≤ P

 The number of tasks in a job x is called the “size” of
job x. We call a job “small” (“large”) if it requires a small
(large) number of processors. The degree of parallelism is
constant over the lifetime of system jobs.
 We assume that the number of job tasks is uniformly
distributed in the range of [1..P]. Therefore, the mean
number of tasks per job is equal to the � = (1+P)/2.
 Each task of job x is routed to a different processor for
execution. The routing policy is based on the criteria
“join the shortest queue” and is defined as follows:

Let:

* n_assigned = number of tasks of job x that have been

already assigned to a processor.

Then:

* n_assigned = 0;

* While n_assigned < t(x) do

* Begin

* n_processors = P – n_assigned;

* Select the shortest of the n_processor queues;

* n_assigned = n_assigned + 1;

* i = n_assigned;

* Assign the selected processor to the ith task of job x;

* Remove this processor from the set of candidate
processors for the next task assignment of job x

* End.

 Tasks in processor queues are examined in an order
determined by the scheduling policy that is employed. Job
x starts to execute only if all p(x) processors assigned to it
are available. Otherwise, all job x tasks wait in their
assigned queues. When a job terminates execution, all
processors assigned to it are released.
 An important issue that arises in cluster environments
is the need to handle owner activities on a subset of the
nodes involved in a parallel computation. Therefore, a
mechanism is needed to deal with the fact that underlying
resources available to a parallel computation are
changing.
 The fluctuating processing capacity of a non-dedicated
cluster of workstations poses several challenging
problems for the job scheduler. The scheduler must give
priority to owners, and at the same time provide good
performance to multiple batch parallel applications that
are trying to scavenge idle cycles from the cluster.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

 We consider that the job scheduler interrupts a parallel
computation on a workstation upon detecting owner
activity. The remaining processors that are assigned to the
interrupted job can serve tasks of other gangs that are
waiting at these processor queues.
 Our research attempts to enhance system performance
in terms of the mean response time for gangs assuming
that owner jobs are served immediately.
 When an owner job arrives during the execution of a
gang task, all work that was performed on all tasks
associated with that gang must be redone. The tasks of an
interrupted gang are rescheduled for execution at the head
of their assigned queues.
 The technique used to evaluate the performance of the
scheduling disciplines is experimentation using a
synthetic workload simulation.
 The workload considered here is characterized by
three parameters:

. The distribution of gang service demand.

. The distribution of workstation owner job service

demand.

. The mean inter-arrival time of gangs.

. The mean inter-arrival time of workstation owner

jobs.

 Gang and workstation owner job service demands are
exponentially distributed with means of 1/� and 1/�′ res-
pectively.
 We consider two arrival streams, one for gangs and
one for workstation owners. The inter-arrival times of
gangs and workstation owners are exponential random
variables with means of 1/�, and 1/�′ respectively.
 All notations used in this paper appear in Table 1.
 In order to define an algorithm that assigns owner jobs
to their respective processors, we consider the following
mechanism:
 On an owner arrival, one of the P workstations is
selected randomly and if it is idle or it serves a task of a
gang, we assume the job that just arrived belongs to this
workstation owner. Otherwise, another workstation is
selected randomly from among the remaining P-1
processors and so on. In the experiments that we conduct,
values of �′ are chosen that do not result in further owner
arrivals in cases where all workstations are occupied by
their owners.

2.2 Job scheduling policies

 It is assumed that the scheduler has comprehensive
information available when making decisions, i.e. it

knows the exact number of processors required by each
job. The following two scheduling strategies are
employed in our simulations:

. Adapted-First-Come-First-Served (AFCFS). This me-
thod attempts to schedule a job whenever processors
assigned to its tasks are available. When there are not
enough processors available for a large job whose tasks
are waiting in the front of the queues, AFCFS policy
schedules smaller jobs whose tasks are behind the tasks of
the large job.
 One major problem with this scheduling policy is that
it tends to favor jobs requiring a smaller number of
processors and thus may increase fragmentation of the
system.

. Largest-Gang-First-Served (LGFS). With this policy
tasks are placed in increasing job size order in processor
queues (tasks that belong to larger gangs are placed at the
head of queues). All tasks in queues are searched in order,
and the first jobs whose assigned processors are available
begin execution.
 This method tends to improve the performance of
large, highly parallel jobs at the expense of smaller jobs,
but in many computing environments this discrimination
is acceptable, if not desirable. For example, supercom-
puters often run large, highly parallel jobs that cannot run
elsewhere.

 When a gang is interrupted due to owner arrival, all
tasks of that gang are resubmitted for execution as the
leading tasks in their assigned queues. They wait at the
head of the ready queues until all processors allocated to
this job are available. The remaining processors assigned
to the interrupted job execute tasks of other jobs waiting
in their queues.
 When the owner task terminates, the interrupted job
likely does not resume execution immediately as some of
processors assigned to it may be working on other jobs.
Those jobs will not terminate at the same time so it is
impossible for the interrupted job to use them efficiently.
 Note also that when an owner arrives at a workstation,
it is not only the tasks of this workstation queue that are
delayed, but also tasks in other workstation queues that
have a sibling task waiting for service in the same queue.
The larger the owner job service, the higher the
probability that some gangs will have long delay if one of
their tasks is at that workstation queue.

2.3 Performance metrics

 We define gang response time as the interval from the
dispatching of this job tasks to processor queues to service
completion of this job (time spent in processor queues
plus time spent in service).

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

 Parameters used in simulation computations (pre-
sented later) are shown in Table 1.

Table 1. Notations

P number of processors

U mean processor utilisation

� mean gang service rate

1/� mean gang service demand

�′ mean workstation owner job service rate

1/�′ mean workstation owner job service demand

� mean arrival rate of gangs

�′ mean arrival rate of workstation owner jobs

RT mean response time of gangs

RT ratio the ratio of RT in the LGFS case over RT in
the AFCFS case

 The relative performance of the two scheduling
policies that we consider is measured by the RT ratio.

3. Simulation results and discussion

3.1 Model implementation and input parameters

 The queuing network model described above is
implemented with discrete event simulation [7] using the
independent replication method.
 For every mean value, a 95% confidence interval is
evaluated. All confidence intervals are less than 5% of the
mean values.
 With regard to gangs and workstation owners arrival
rates, two set of experiments were carried out:

. In the first set, for gang mean inter-arrival time 1/� =

1, and for 1/� = 1/�′ = 1, we vary the mean inter-
arrival time of the workstation owners as follows: 1/�′
= 1, 0.8, 0.6, and 0.4. We are therefore able to
consider cases where owner activities occur with
different frequencies over time.

. In the second set of experiments, we consider 1/� = 1,

and we study three cases for the mean inter-arrival
time of gangs: 1/� = 1, 0.8, and 0.6. In each of these
cases we study the following combinations of mean
inter-arrival time – mean service demand of
workstation owners: (1/�′ = 1, 1/�′ = 1), (1/�′ = 2, 1/�′
= 2), (1/�′ = 4, 1/�′ = 4), and (1/�′ = 8, 1/�′ = 8). We
are therefore able to study for various cases of �, the

impact of the frequency and the duration of owner
activities on gang’s performance.

 It should be noted that there are on average 8.5 tasks
per parallel job ((P+1)/2). So, if we do not consider owner
jobs and all processors are busy due to gang service, then
an average of P / 8.5 = 1.88235 parallel jobs can be
served each unit of time. This implies that we should
choose a � < 1.88235.
 However, due to owner activity, the number of
processors that are available to gang service is [P –
(�′/�′)]. Therefore, we have to choose a value of � for
which the following relationship holds:

� < [P – (�′/�′)] / 8.5

3.2 Performance analysis

 Due to space considerations, the following partial
results are presented. The results describe overall relative
performance of the two different scheduling policies very
accurately.
 Figures 2-5 are RT and RT ratio versus 1/ �′. Figures
6-7 are U versus 1/ �′. Tables 2-5 present U in all cases
that we examined. Simulation results indicate the
following:

a. Performance with regard to mean response time of
gangs

First set of experiments: Figures 2 - 3 show that for all
arrival rates of workstation owner jobs the LGFS method
yields lower mean response time than AFCFS. The
difference in performance between the two policies is
higher in the case where the inter-arrival time of the
workstation owner jobs is equal to the inter-arrival time of
gangs. As the arrival rate of workstation owner jobs
increases, the difference in performance decreases and
tends to be constant for 1/�′ < 0.8. This is due to the
following: The higher the arrival rate of workstation
owner jobs is, the greater is the possibility that fewer
processors are available for gang service. Therefore, the
potential of the LGFS policy is not completely exploited,
as large gangs cannot find enough idle processors to serve
them.
 We can also observe a sharp increase in the response
time of gangs where 1/�′ < 0.8. In this case, both
scheduling policies yield very high mean gang response
time as compared with the mean gang service time. This
means that the mean number of processors that are
available to serve gangs has to be greater than 14.33, in
order for gangs to have acceptable performance.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

�

�

�

�

�

�

�

�

1 1.2 1.4 1.6

���

0

30

60

90

120

150

180

RT

AFCFS LGFS� �

1,0 0,8 0,6 0,4

Figure 2. RT versus 1/�′ (1/� = 1, � = �′ = 1)

1 0,8 0,6 0,4

���

0,5

0,6

0,7

0,8

0,9

1

��� �

RT ratio

Figure 3. RT ratio versus 1/�′, (1/� = 1, � = �′ = 1)

Second set of experiments: In these experiments we
consider various cases where the mean inter-arrival rate of
workstation owner jobs is equal to their mean service rate.
These cases are studied for different gang mean inter-
arrival time. Figures 4 - 5 show that in most cases of gang
mean inter-arrival time that we examined, overall
performance is superior with the LGFS method in terms
of mean response time.
 However, when 1/� = 0.6 (� =1.67), with either
scheduling method RT is very high as compared with the
1/� =1, and 1/� = 0.8 cases. This is because more gangs
delay in processor queues when mean gang arrival rate is
equal to 1.67 than when it is smaller. Further to this, since
workstation owner jobs have higher priority as compared
to gangs, when they block a gang they not only influence
the performance of the current gang, but also affect the
performance of subsequent gangs. When a workstation
occupied by its owner is released, some of the processors
assigned to the interrupted job may already have served
other jobs. Those jobs will not finish at the same time, so
their processors are not used efficiently.

 In Figure 5 we observe that for all �′, the superiority of
the LGFS method over the AFCFS policy increases as 1/�
decreases from 1 to 0.8. This is because the advantages of
the LGFS case are exploited better when there are a
sufficient number of gangs in the queues so that they can
be selected according to the LGFS criteria. However, the
difference in performance decreases with a further
decrease of 1/� from 0.8 to 0.6. This is because high loads
cause queuing delays of gangs with either scheduling
method. Especially for 1/� = 0.6, and 1/�′ = 1/�′= 2 the
two policies produce almost the same RT. Therefore, if
overhead is considered, in this case AFCFS is preferred as
it results in less overheard.

	

	

	

	

�

�

�

�

� �� �

�
�

�

�

�
�

� �
�

�
� �

� � � �

���

��

��

��

���

���

���

���

57

$)&)6� ��� � /*)6� ��� �

$)&)6� ��� ��� /*)6� ��� ���

$)&)6� ��� ��� /*)6� ��� ���

� �

� �

� 	

� �

Figure 4. RT versus 1/�′, (� = 1, �′ = �′)

� � � �

���

�

���

���

���

���

�

��� � ��� ��� ��� ���

57 UDWLR

Figure 5. RT ratio versus 1/�′, (� = 1, �′ = �′)

b. Performance with regard to mean processor
utilization

 In most cases the mean processor utilization is higher
with the LGFS policy than with AFCFS (Tables 2-5,
Figures 6-7). However, with both policies, part of the

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

processor utilization is comprised of repeated gang work,
caused by workstation owner arrivals. The repeat work
depends on the number of tasks in the gang, the task
service demand, and the work that has already been
accomplished by the gang at the moment of interruption.
It is possible for a gang to be interrupted many times over
the period of its execution. This would be caused by
multiple owner arrivals at different workstations serving
tasks of this gang.
 In Tables 4-5, and in Figure 7 it is shown that for any
�′ the largest difference in processor utilization between
the two policies appears for 1/� = 0.6. However, as we
have already noted, an increase in processor utilization
does not necessarily mean performance improvement.

Table 2. Mean processor utilization, AFCFS case,

(1/� = 1, � = �′ = 1)

 1/�′= 1 1/�′= 0.8 1/�′= 0.6 1/�′= 0.4

1/� = 1 1/�′= 1

1/� = 1 0.588 0.588 0.602 0.598

Table 3. Mean processor utilization, LGFS case,

(1/� = 1, � = �′ = 1)

 1/�′= 1 1/�′= 0.8 1/�′= 0.6 1/�′= 0.4

1/� = 1 1/�′= 1

1/� = 1 0.577 0.610 0.617 0.617

Table 4. Mean processor utilization, AFCFS case,

(� = 1, �′ = �′)

 1/�′= 1 1/�′= 2 1/�′= 4 1/�′= 8

1/� = 1 �′ = �′

1/� 1.0

1/� 0.8

1/� 0.6

0.588

0.681

0.739

0.581

0.701

0.746

0.579

0.693

0.746

0.587

0.692

0.750

Table 5. Mean processor utilization, LGFS case,
(� = 1, �′ = �′)

 1/�′= 1 1/�′= 2 1/�′= 4 1/�′= 8

� = 1 �′ = �′

1/� 1.0

1/� 0.8

1/� 0.6

0.577

0.700

0.826

0.586

0.706

0.837

0.573

0.701

0.835

0.587

0.699

0.833

�

�� �

�
�

�
�

1 1,2 1,4 1,6

���

0,5

0,6

0,7

0,8

0,9

1
U

AFCFS LGFS� �

1 0,4 0,6 0,8

Figure 6. U versus 1/�′, (1/� = 1, � = �′ = 1)

	 		 	

�
�� �

� �� �
�

�
� �

�
��

�
� �� �

1 2 3 4

���

0,5

0,6

0,7

0,8

0,9

1
U

$)&)6� ��� � /*)6� ��� �

$)&)6� ��� ��� /*)6� ��� ���

$)&)6� ��� ��� /*)6� ��� ���

� �

� �

� 	

) �

Figure 7. U versus 1/�′, (� = 1, �′ = �′)

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

 4. Conclusions and further research

 This paper examines the performance of two gang
scheduling policies in a non-dedicated workstation
cluster. A simulation model is used to address
performance issues associated with gang scheduling for
various workloads.

The following is a summary of the simulation results:

. In most cases that we examined, the Largest-Gang-
First-Served (LGFS) method outperforms the
Adapted – First – Come – First – Served (AFCFS)
policy.

. The relative performance of the two gang scheduling
policies depends on the workload characteristics.

. With respect to scheduling overhead, in those cases
where performance of the two methods does not
differ significantly, the AFCFS method is preferred,
as it is easier to implement.

 This paper is a case study. It can be extended to the
case where after an owner departs, the interrupted parallel
job can restart from an intermediate checkpoint. This
requires the periodic saving of each task’s internal state.

References

[1] A. Chowdhury, L.D. Nicklas, S.K. Setia, and E.L. White,
“Supporting Dynamic Space-sharing on Clusters of Non-
dedicated Workstations”, In Proceedings of the 17th
International Conference on Distributed Computing Systems
(ICDS ’97), IEEE, Baltimore, Maryland, 28-30 May 1997, pp.
149-158.

[2] D.G. Feitelson, and L. Rudolph, “Parallel Job Scheduling:
Issues and Approaches”, In Job Scheduling Strategies for
Parallel Processing, Lecture Notes in Computer Science,
Springer-Verlang, Berlin, Germany, 1995, Vol. 949, pp. 1-18.

[3] D.G. Feitelson, and L. Rudolph, “Evaluation of Design
Choices for Gang Scheduling Using Distributed Hierarchical
Control”, Journal of Parallel and Distributed Computing,
Academic Press, New York, USA, 1996, Vol. 35, pp. 18-34.

[4] D.G. Feitelson, and M.A. Jette, “Improved Utilisation and
Responsiveness with Gang Scheduling”, In Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer
Science, Springer-Verlang, Berlin, Germany, 1997, Vol. 1291,
pp. 238-26.

[5] H.D. Karatza, “A Simulation-Based Performance Analysis
of Gang Scheduling in a Distributed System”, In Proceedings of
the 32nd Annual Simulation Symposium, IEEE Computer
Society, San Diego, CA, USA, April 1999, pp. 26-33.

[6] H.D. Karatza, “Gang Scheduling and I/O Scheduling in a
Multiprocessor System”, In Proceedings of SPECTS'2K, 2000
SCS Symposium on Performance Evaluation of Computer and
Telecommunication Systems, SCS, Vancouver, BC, Canada, July
16-20, 2000, pp. 245-252.

[7] Law, A., and D. Kelton, Simulation Modelling and Analysis,
McGraw-Hill, New York, 1991.

[8] P.G. Sobalvarro, and W.E. Weihl, “Demand-based
Coscheduling of Parallel Jobs on Multiprogrammed
Multiprocessors”, In Job Scheduling Strategies for Parallel
Processing, Lecture Notes in Computer Science, Springer-
Verlang, Berlin, Germany, 1995, Vol. 949, pp. 106-126.

[9] M.S.Squillante, F. Wang, and M. Papaefthymioy,
“Stochastic Analysis of Gang Scheduling in Parallel and
Distributed Systems”, Performance Evaluation, Elsevier,
Amsterdam, Holland, 1996, Vol. 27&28 (4), pp. 273-296.

[10] F. Wang, M. Papaefthymiou, and M.S. Squillante,
“Performance Evaluation of Gang Scheduling for Parallel and
Distributed Systems”, In Job Scheduling for Parallel
Processing, Lecture Notes in Computer Science, Springer-
Verlang, Berlin, Germany, 1997, Vol. 1291, pp. 184-195.

[11] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam,
“The Impact of Migration on Parallel Job Scheduling for
Distributed Systems”, In Proceedings of Europar, Munich,
Germany, 29 August to 2 September 2000, pp. 242-251.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

