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Abstract 
 
 This paper examines load sharing in a network of 
workstations (NOW). It proposes a special load sharing 
method referred to as epoch load sharing. With this 
policy, load is evenly distributed among workstations 
with job migration only at the end of predefined 
intervals. The time interval between successive load 
sharing is called an epoch. We compare the 
performance of epoch load sharing with other 
traditional load sharing methods. The objective is to 
reduce the number of times that global system 
information is needed to make allocation decisions, 
while at the same time achieving good overall 
performance. A simulation model is used to address 
performance issues associated with load sharing. 
Simulated results indicate that epoch load sharing 
frequently succeeds in this pursuit. 
 
 
1. Introduction 
 
 Distributed computing based on a network of 
workstations (NOW) has been a topic of research for 
many years. As networks of workstations emerge and 
become viable platforms for a wide range of applications, 
new policies are needed to allocate workstation resources 
to competing users. 
 Generally, in distributed systems no processor should 
remain idle while others are overloaded. It is preferable 
that the workload be uniformly distributed over all of the 
processors. It is important to efficiently utilize computati-
onal power, especially when load distribution is neces-
sary. 
 A number of load balancing and load sharing 
algorithms appear in the literature. In general, the purpose 
of load balancing is to divide work evenly among the 
processors; whereas, the purpose of load sharing algo-
rithms is to ensure that no processor remains idle when 
there are other heavily loaded processors in the system.  

 With sender-initiated algorithms, load-distribution 
activity is initiated when an over-loaded node (sender) 
tries to send a task to another under-loaded node (recei-
ver). In receiver-initiated algorithms, load-distribution is 
initiated by an under-loaded node (receiver), when it 
requests a task from an over-loaded node (sender).  
 Scheduling policies that use information about the 
average behavior of the system and ignore the current 
state, are called static policies. Static policies may be 
either deterministic or probabilistic. Policies that react to 
the system state are called adaptive or dynamic policies. 
Dynamic load balancing is an important system function 
designed to distribute workload among available 
processors and improve throughput. 
 The principle advantage of static policies is simplicity, 
since they do not require the maintenance and processing 
of system state information.  Adaptive policies tend to be 
more complex, mainly because they require information 
on the system's current state when making transfer 
decisions. However, the added complexity can significan-
tly improve performance benefits over those achievable 
with static policies. 
 This paper investigates probabilistic, deterministic and 
adaptive policies. Comparative results are obtained using 
simulation techniques. 
 In the probabilistic case, the scheduling policy is 
described by state independent branching probabilities. 
Jobs are dispatched randomly to workstations with equal 
probability. In the deterministic case, routing decisions 
are based on system state, so jobs join the shortest of the 
all workstation queues.  
 In the adaptive case, variations of the two scheduling 
policies described above are used. For example, when 
workstations become idle, jobs can migrate from heavily 
loaded workstation queues to idle workstations. This is a 
receiver initiated adaptive load sharing method. It 
balances the job load and can improve overall system 
performance.  
 Another adaptive load sharing method is referred to as 
epoch load sharing. With this policy, load is evenly dis-
tributed among workstations, and job migration occurs 
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only at the end of predefined intervals. The time interval 
between successive load sharing transfers is called an 
epoch.  
 Most research into distributed system scheduling 
policies focuses on improving system throughput where 
scheduling overhead is assumed to be negligible. 
However, scheduling overhead can seriously degrade 
performance. Therefore, the number of times the 
scheduler is called to make load sharing decisions can be 
a factor that degrades performance. 
 Also, jobs transferred to remote workstations incur 
communication costs. In this model, only queued jobs are 
transferred. We have considered the migration of non 
executing jobs. It is assumed that the job being executed 
is not eligible for transfer because doing so is too 
complex. An obvious disadvantage of preemptive mig-
ration is the need to transfer the memory associated with 
the migrated process; thus, migration costs for an active 
process is much greater than the cost of remote execution. 
 We compare the performance of epoch load sharing 
with other traditional load sharing methods. The objective 
is to reduce the number of times that global system 
information is needed to make allocation decisions,  while 
at same time achieving good overall performance. A 
simulation model is used to address performance issues 
associated with load sharing. Simulated results indicate 
that epoch load sharing often succeeds in this pursuit.  
 Load sharing and load balancing have already been 
studied by many authors ([1], [2], [3], [4], [5], [6]). 
However, these studies do not address the issue of epoch 
job migration.   
 The epoch load sharing examined here is different 
from the epoch scheduling studied in [8]. That paper, 
focuses on the scheduling of memory constrained jobs in 
distributed memory parallel computers. Only policies that 
provide co-scheduling are considered, and the number of 
processors allocated to a job may be changed during its 
execution. All nodes are reallocated to jobs at each 
reallocation point.   
 We do not consider co-scheduling. Instead of real-
locating nodes to jobs, we consider load sharing via job 
migration at the end of predefined intervals. Epoch job 
migration is studied in a closed queuing network model of 
a NOW where the I/O subsystem is incorporated.  
 Generally, other papers found in the distributed and 
parallel systems literature study processor scheduling 
only. They do not explicitly model I/O processing, even 
though it can significantly influence overall system 
performance. However, scheduling is not an independent 
issue. Different components of the system must work 
together to create a cohesive whole in a way that makes 
sense. A Rosti et al. ([9]) study of large-scale parallel 
computer systems suggests that by overlapping the I/O 
demands of some jobs with the computational demands of 
other jobs, performance can be improved.  

 Scheduling algorithms involve overhead which is 
attributed to two factors: the scheduling algorithm’s 
execution time, and the number of task migrations the 
scheduler produces. 
 It is well known that shortest queue scheduling 
performs better than probabilistic scheduling. However, 
the shortest queue method invokes the scheduler every 
time a job demands processing service. The objective of 
this study is to find an epoch that performs well when 
compared with the shortest queue method and which 
involves less overhead. In this work, migration overhead 
impacts on performance. Therefore, we define scheduling 
optimality as minimizing the number of times the 
scheduler is activated since invoking the scheduler re-
quires considerable overhead to collect load information 
from all workstations. 
 Performance is examined for different epoch sizes, 
different communication costs and for various degrees of 
multiprogramming (various system loads). Simulation 
indicates that in many cases, epoch load sharing performs 
close to the shortest queue method while involving much 
less overhead. To our knowledge, such an analysis of 
epoch load sharing has not appeared in the research lite-
rature.  
 The structure of this paper is as follows. Section 2.1 
specifies system and workload models, section 2.2 des-
cribes the scheduling strategies, and section 2.3 presents 
the metrics employed while assessing the performance of 
the scheduling policies. Model implementation and input 
parameters are described in section 3.1 while the results 
of the simulation experiments are presented and analyzed 
in section 3.2. Section 4 provides conclusions and sug-
gestions for further research. 
 
2. Model and methodology 
 
2.1 System and workload models 
 
 This paper uses a simulation model to address load 
sharing issues. A closed queuing network model of a 
NOW is considered. P = 16 homogeneous workstations 
are available, each serving its own queue. A high-speed 
network connects the distributed nodes. This is a 
representative model for many existing departmental 
networks of workstations. 
 A multi-server disk center is included in the system. 
Since files can be stripped across a variable number of 
disks, a natural way to capture stripped tasks is by using a 
fork-join system. Each I/O request forks in sub-requests 
that are served by parallel disk servers. Although the I/O 
subsystem consists of an array of disks, it is modeled as a 
single I/O node with a given mean service time. Since we 
are interested in a system with balanced program flow, an 
I/O subsystem with the same service capacity as the 
processors is considered.  
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 The degree of multiprogramming N is constant during 
each simulation run. N jobs circulate alternately between 
the processors and the I/O subsystem. The configuration 
of the model is shown in Figure 1. 
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Figure 1. The queuing network model 
 
 The jobs examined are highly independent. For 
example, once a job commences execution, no job ever 
idly waits for communication with (i.e., synchronizes 
with) other jobs.  
 We consider the problem of resource management in a 
NOW, and focus on load sharing as an efficient strategy 
to improve throughput. However, the load sharing activity 
comes at the expense of useful computation, incurs com-
munication overhead, and consumes memory space to 
maintain load sharing information.  
 Our study examines various methods of allocating 
jobs for load sharing using simulation. Traditional 
methods of scheduling are compared with epoch sche-
duling. The scheduling policies (described next) are 
probabilistic, deterministic, and adaptive. In the adaptive 
case, job migration is performed for load sharing. This is 
a receiver-initiated load sharing method. Our research 
seeks to enhance system performance in terms of through-
put by dynamic load sharing.  
 When a job is transferred to a workstation for remote 
processing, the job incurs a communication cost. In this 
model, only jobs in the scheduling queue are transferred. 
The latest-job-arrived selection policy is used to select a 
job for transfer from the sending workstation to the 
receiver workstation. We believe that the average transfer 
cost for a nonexecuting job, although nonegligible, is 
quite low relative to the average job processing costs. The 
communication channel is modelled as a single server 
queuing system, whose service time is an exponentially 
distributed random variable, with mean Co, in order to 
deal with the effects of communication overhead. The 
benefits of migration depend on migration costs. 

When jobs leave a workstation, they request service 
on the I/O subsystem. The I/O queuing discipline is 
FCFS. 
 A technique used to evaluate the performance of the 
scheduling disciplines is experimentation using a 
synthetic workload simulation. In studies like this, the use 
of synthetic workloads is usually necessary because real 
workloads cannot be simulated efficiency and real 
systems with actual workloads are not normally available 
for experimentation. Also, useful analytic models are 
difficult to derive because subtleties between various 
disciplines are difficult to model.  
 The workload considered here is characterized by 
three parameters:  
 
. The distribution of processor service time.  
. The distribution of I/O service time.  
. The degree of multiprogramming.  
 

 Processor and I/O service times are independent and 
identically distributed (IID) exponential random variables 
with means of m and k respectively. 

 All notations used in this paper appear in Table 1.  
 
2.2 Job scheduling policies 
 
 The following scheduling strategies are employed in 
our simulations.  
 
• Probabilistic (Pr)  
 With this policy, a job is dispatched randomly to one 

of the workstations with equal probability. The job 
dispatcher chooses one of the P workstations based on 
the outcome of an independent trial in which the ith 

outcome has probability pi = 1 / P. Then the FCFS 
policy is applied. Therefore, with this method the 
scheduler is never activated to make decisions which 
depend on system state. 

 
• Probabilistic with Migration (PrM)  
 Jobs are assigned to processor queues in the same way 

as in the Pr case. However, when a processor becomes 
idle and there are jobs waiting at the other processor 
queues, a job migrates from the most heavily loaded 
processor to the idle processor. This is a receiver-
initiated algorithm, since load-distributing activity is 
initiated by an idle node (receiver), which tries to get a 
job from an overloaded node (sender). For stability 
reasons, sender nodes can only have a queue length 
greater than one. This policy activates the scheduler 
only when a processor becomes idle. 

 
• Shortest Queue (SQ) 
 With this strategy, a job is assigned to the shortest 
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processor queue. Therefore the scheduler is activated 
every time a job arrives. Each job is entered into its 
assigned queue in the order of its arrival. 

 
• SQ with Migration (SQM)  
 This is a variation of SQ, where migration takes place 

in the same way as in PrM. Therefore with this 
strategy the scheduler is called on job arrival and also 
when a processor becomes idle after a job departure. 

 
• Epoch Load Sharing (ELS)  
 With this policy, load is evenly distributed among 

workstations using job migration which occurs only at 
the end of predefined intervals called epochs. At the 
end of an epoch, the scheduler collects information 
about the status of all workstation queues, evaluates 
the mean of all queue lengths, and places processor 
queue lengths into increasing order in a table. Then it 
moves jobs from the most heavily loaded processors to 
the lightly loaded ones until either all processors have 
queue lengths equal to the mean or some of them differ 
at most by one job.  

  
 All five of the above scheduling schemes have merit. 
Pr is the simplest method since it involves only a 
negligible amount of overhead when generating random 
numbers. It is apparent that Pr results in suboptimal 
performance. However, this method never activates the 
scheduler as it does not need decisions that depend on 
system state. The SQ method requires global knowledge 
of queues on job arrival and so the scheduler is called 
upon to make decisions every time a job arrives. The 
migratory versions of these policies invoke the scheduler 
when a processor becomes idle and they also involve 
overhead each time a job migrates. The migration 
overhead is taken into account in this study. Therefore, a 
major concern is the number of times the system 
scheduler is called to collect information about processor 
queues in order to manage the information and to make 
transfer decisions. 
 The collection and management of global load 
information as well as transfer decision making require 
non-trivial amounts of overhead.  However, this overhead 
is necessary to implement even a moderately effective 
scheduler. In this study, the parameter that reflects the 
scheduling policy complexity is the number of times that 
the scheduler is activated to make decisions which depend 
on system state. 
 
2.3 Performance metrics 
 
 Parameters used in simulation computations (pre-
sented later) are shown in Table 1. 
 

Table 1:  Notations 
 

N Degree of multiprogramming 

m Mean processor service time 

k Mean I/O service time 

R System throughput  

NSA Number of times that the system 
Scheduler is Activated  

DR Relative (%) increase in R when one of the 
above described methods is employed 
instead of the Pr policy 

DNSA Relative (%) decrease in NSA when one of 
the above described methods is employed 
instead of the SQ policy 

Co Mean communication delay due to job 
migration 

 
3.  Simulation results and discussion 
 
3.1 Model implementation and input parameters 
   
 The queuing network model described above is 
implemented with discrete event simulation ([7]) using 
the independent replication method. For every mean 
value, a 95% confidence interval was evaluated. All 
confidence intervals were found to be less than 5% of the 
mean values.  
 A balanced system with m=1.0 and k = 0.0625 was 
considered. 
 The degree of multiprogramming N was 16, 32, 48, 
64, and 80. The reason for examining different degrees of 
multiprogramming is that it is a critical parameter in 
determining system load.  
 Epoch size was 1, 2, 4, and 8. We chose epoch length 
1 as a starting point for the experiments because the mean 
processor service time is equal to 1, and also because with 
this epoch size NSA was smaller than in the SQ case. We 
expected that larger epoch sizes would result in even 
smaller NSA. 
 Mean communication delay Co was 0.1, 0.2, 0.25, 0.5. 
That is, we chose mean communication delay equal to 
m/10, m/5, m/4, and m/2. These are reasonable choices for 
low to high communication delays because we considered 
the migration of non executing jobs.          
 
3.2  Performance analysis  
 
 Only the following results are presented due to space 
limitations.  These results represent the overall relative 
performance of the different policies very accurately. 
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. In Figures 2, 5, 8, 11: R versus N, for Co = 0.1, 0.2, 

0.25, and 0.5 respectively. 
. In Figures 3, 6, 9, 12: DR versus N, for Co = 0.1, 0.2, 

0.25, and 0.5, respectively. 
. In Figures 4, 7, 10, 13: DNSA versus N, for Co = 0.1, 

0.2, 0.25, and 0.5 respectively. 
 
 Simulation results demonstrate the following: 
 In all cases, the overall performance in terms of 
system throughput is superior with the SQ and SQM 
methods. Actually, these two methods produce close to 
the same throughput. This is due to the fact that in the SQ 
case jobs are always assigned to the shortest queue, so it 
is probable that the load is evenly distributed among pro-
cessors. Therefore, there are only rare opportunities for 
migration. In the SQM case, when migration occurs to an 
idle processor, the next arriving job will be dispatched to 
another idle processor because of the shortest queue 
criterion. 
 The superiority of the SQ method is intuitive. 
However, the intent of this study is to determine how 
much better it is when compared with other methods, and 
if the extent of its superiority justifies overhead required 
to maintain knowledge of processor queue lengths.   
 The worst method is the probabilistic policy Pr. The 
difference in performance between SQ and Pr decreases 
with increasing N. For N = 16, DR is about 67%, while for 
N=80, DR is about 19%. The migration of jobs when using 
PrM significantly improves overall performance as 
compared with Pr. This is because using the Pr policy 
there are cases where processors have unbalanced queues. 
For all N and all Co, the difference in performance 
between PrM and Pr methods varies between 15% and 
36%.   
 For all epoch sizes, epoch load sharing performs better 
than Pr. Performance in terms of throughput improves 
with decreasing epoch size.  
 For each epoch size the performance deteriorates with 
increasing Co. The deterioration is larger for smaller 
epoch sizes than for larger ones. However, in all cases the 
deterioration is very slight. For epoch size 8, R is almost 
the same for all Co. Co affects the performance of the 
PrM method more than the performance of the epoch 
policy. However, even in the PrM case the difference in 
performance due to varying Co is not significant. For 
example, in the PrM case for N = 32, when Co increases 
from 0.1 to 0.5, then the relative decrease in R is about 
5%. This is the largest difference observed as a result of 
varying Co in all of the cases examined. 
 For Co = 0.1, N = 64, and N = 80, the PrM and SQ 
algorithms perform very close to ELS for epoch sizes 1 
and 2. However, as Co increases, with these degrees of 
multiprogramming, the decrease in R is larger in the PrM 
case than in the ESL case. For Co = 0.5, and N = 64 and 

80, PrM performs worst than ELS (for epoch sizes 1 and 
2) while ESL still performs close to SQ. 
 For all Co and for all N, the relative decrease in the 
number of scheduler activations (DNSA) is very high with 
all epoch sizes (i.e., in the range 89-99%). DNSA is lower 
in the PrM case (in the range 66% – 86%). NSA is slightly 
larger in the SQM case than in the SQ case due to job 
migration.  
 For any Co and for any N, DNSA increases with 
increasing epoch size. For a given epoch size and a given 
N, DNSA is almost the same for all Co. 
 As was already mentioned, for N = 64, and 80, and for 
all Co, ELS performs close to SQ for epoch sizes 1 and 2. 
DNSA in this case is not much smaller than the DNSA of the 
4, and 8 epoch size cases. From the point where N  = 48, 
as N decreases ELS starts to decline with SQ. For N ≤ 48, 
PrM performs better than ESL but in many cases its 
superiority over ESL is not significant if overhead is 
considered. Actually, there are cases where DNSA is much 
higher in the ESL case than in PrM. For N=16, the SQ 
method performs much better than all other methods. 
Therefore, even though the overhead that this method 
incurs can degrade its superiority, its performance is 
expected to remain high in comparison with other 
methods.  
 In all cases, system load (mean workstation utilizati-
on) varied between 0.50 (Pr, N=16) and 0.99 (SQ, N=80).  
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Figure 2. R  versus N, Co =0.1 
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Figure 3. DR  versus N, Co =0.1 
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Figure 4. DNSA versus N, Co = 0.1 
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Figure 5. R  versus N, Co =0.2 
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Figure 6. DR versus N, Co = 0.2 
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Figure 7. DNSA versus N, Co = 0.2 
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Figure 8. R  versus N, Co =0.25 
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Figure 9. DR versus N, Co = 0.25 
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Figure 10. DNSA versus N, Co = 0.25 
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Figure 11. R  versus N, Co =0.5 
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Figure 12. DR versus N, Co = 0.5 
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Figure 13. DNSA versus N, Co = 0.5 
 
4.  Conclusions and further research  
 
 This paper studies load sharing policies in a network 
of workstations. Simulation is used to generate results 
needed to compare different configurations. 
 A new policy called Epoch Load Sharing (ELS) is 
proposed. Its performance is compared with other 
scheduling methods for different epoch sizes, different 
migration overhead, and for various degrees of multipro-
gramming N. 
 Simulation results reveal the following: 
 
. For all levels of migration overhead, all N, and for all 

epoch sizes, ELS involves much less overhead than 
the shortest queue (SQ) policy, and involves less 
overhead than the Probabilistic Migratory (PrM) 
method, in terms of the collection of global system 
information.  

. For high loads, ELS with small epoch size is preferred 
since it performs very close to the SQ method. 

. For moderate loads, in some cases the PrM method is 
best while in other cases ESL with a small epoch size 
is preferred.  

. For light loads, the SQ method is recommended.  
 
 This paper is a case study. It can be extended to cases 
where:  

. An estimate of job service time is known in advance 
and can be considered, so that very small jobs will not 
be migrated. 

. Epoch load sharing is applied in a heterogeneous 
NOW. 
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