
Epoch Load Sharing in a Network of Workstations

Helen D. Karatza
Department of Informatics

Aristotle University of Thessaloniki
54006 Thessaloniki, Greece

karatza@csd.auth.gr

Ralph C. Hilzer
Computer Science Department

California State University, Chico
Chico, California 95929-0410 USA

hilzer@ecst.csuchico.edu

Abstract

 This paper examines load sharing in a network of
workstations (NOW). It proposes a special load sharing
method referred to as epoch load sharing. With this
policy, load is evenly distributed among workstations
with job migration only at the end of predefined
intervals. The time interval between successive load
sharing is called an epoch. We compare the
performance of epoch load sharing with other
traditional load sharing methods. The objective is to
reduce the number of times that global system
information is needed to make allocation decisions,
while at the same time achieving good overall
performance. A simulation model is used to address
performance issues associated with load sharing.
Simulated results indicate that epoch load sharing
frequently succeeds in this pursuit.

1. Introduction

 Distributed computing based on a network of
workstations (NOW) has been a topic of research for
many years. As networks of workstations emerge and
become viable platforms for a wide range of applications,
new policies are needed to allocate workstation resources
to competing users.
 Generally, in distributed systems no processor should
remain idle while others are overloaded. It is preferable
that the workload be uniformly distributed over all of the
processors. It is important to efficiently utilize computati-
onal power, especially when load distribution is neces-
sary.
 A number of load balancing and load sharing
algorithms appear in the literature. In general, the purpose
of load balancing is to divide work evenly among the
processors; whereas, the purpose of load sharing algo-
rithms is to ensure that no processor remains idle when
there are other heavily loaded processors in the system.

 With sender-initiated algorithms, load-distribution
activity is initiated when an over-loaded node (sender)
tries to send a task to another under-loaded node (recei-
ver). In receiver-initiated algorithms, load-distribution is
initiated by an under-loaded node (receiver), when it
requests a task from an over-loaded node (sender).
 Scheduling policies that use information about the
average behavior of the system and ignore the current
state, are called static policies. Static policies may be
either deterministic or probabilistic. Policies that react to
the system state are called adaptive or dynamic policies.
Dynamic load balancing is an important system function
designed to distribute workload among available
processors and improve throughput.
 The principle advantage of static policies is simplicity,
since they do not require the maintenance and processing
of system state information. Adaptive policies tend to be
more complex, mainly because they require information
on the system's current state when making transfer
decisions. However, the added complexity can significan-
tly improve performance benefits over those achievable
with static policies.
 This paper investigates probabilistic, deterministic and
adaptive policies. Comparative results are obtained using
simulation techniques.
 In the probabilistic case, the scheduling policy is
described by state independent branching probabilities.
Jobs are dispatched randomly to workstations with equal
probability. In the deterministic case, routing decisions
are based on system state, so jobs join the shortest of the
all workstation queues.
 In the adaptive case, variations of the two scheduling
policies described above are used. For example, when
workstations become idle, jobs can migrate from heavily
loaded workstation queues to idle workstations. This is a
receiver initiated adaptive load sharing method. It
balances the job load and can improve overall system
performance.
 Another adaptive load sharing method is referred to as
epoch load sharing. With this policy, load is evenly dis-
tributed among workstations, and job migration occurs

Proceedings of the 34th Annual Simulation Symposium (SS �01)
1080-241X/01 $10.00 © 2001 IEEE

only at the end of predefined intervals. The time interval
between successive load sharing transfers is called an
epoch.
 Most research into distributed system scheduling
policies focuses on improving system throughput where
scheduling overhead is assumed to be negligible.
However, scheduling overhead can seriously degrade
performance. Therefore, the number of times the
scheduler is called to make load sharing decisions can be
a factor that degrades performance.
 Also, jobs transferred to remote workstations incur
communication costs. In this model, only queued jobs are
transferred. We have considered the migration of non
executing jobs. It is assumed that the job being executed
is not eligible for transfer because doing so is too
complex. An obvious disadvantage of preemptive mig-
ration is the need to transfer the memory associated with
the migrated process; thus, migration costs for an active
process is much greater than the cost of remote execution.
 We compare the performance of epoch load sharing
with other traditional load sharing methods. The objective
is to reduce the number of times that global system
information is needed to make allocation decisions, while
at same time achieving good overall performance. A
simulation model is used to address performance issues
associated with load sharing. Simulated results indicate
that epoch load sharing often succeeds in this pursuit.
 Load sharing and load balancing have already been
studied by many authors ([1], [2], [3], [4], [5], [6]).
However, these studies do not address the issue of epoch
job migration.
 The epoch load sharing examined here is different
from the epoch scheduling studied in [8]. That paper,
focuses on the scheduling of memory constrained jobs in
distributed memory parallel computers. Only policies that
provide co-scheduling are considered, and the number of
processors allocated to a job may be changed during its
execution. All nodes are reallocated to jobs at each
reallocation point.
 We do not consider co-scheduling. Instead of real-
locating nodes to jobs, we consider load sharing via job
migration at the end of predefined intervals. Epoch job
migration is studied in a closed queuing network model of
a NOW where the I/O subsystem is incorporated.
 Generally, other papers found in the distributed and
parallel systems literature study processor scheduling
only. They do not explicitly model I/O processing, even
though it can significantly influence overall system
performance. However, scheduling is not an independent
issue. Different components of the system must work
together to create a cohesive whole in a way that makes
sense. A Rosti et al. ([9]) study of large-scale parallel
computer systems suggests that by overlapping the I/O
demands of some jobs with the computational demands of
other jobs, performance can be improved.

 Scheduling algorithms involve overhead which is
attributed to two factors: the scheduling algorithm’s
execution time, and the number of task migrations the
scheduler produces.
 It is well known that shortest queue scheduling
performs better than probabilistic scheduling. However,
the shortest queue method invokes the scheduler every
time a job demands processing service. The objective of
this study is to find an epoch that performs well when
compared with the shortest queue method and which
involves less overhead. In this work, migration overhead
impacts on performance. Therefore, we define scheduling
optimality as minimizing the number of times the
scheduler is activated since invoking the scheduler re-
quires considerable overhead to collect load information
from all workstations.
 Performance is examined for different epoch sizes,
different communication costs and for various degrees of
multiprogramming (various system loads). Simulation
indicates that in many cases, epoch load sharing performs
close to the shortest queue method while involving much
less overhead. To our knowledge, such an analysis of
epoch load sharing has not appeared in the research lite-
rature.
 The structure of this paper is as follows. Section 2.1
specifies system and workload models, section 2.2 des-
cribes the scheduling strategies, and section 2.3 presents
the metrics employed while assessing the performance of
the scheduling policies. Model implementation and input
parameters are described in section 3.1 while the results
of the simulation experiments are presented and analyzed
in section 3.2. Section 4 provides conclusions and sug-
gestions for further research.

2. Model and methodology

2.1 System and workload models

 This paper uses a simulation model to address load
sharing issues. A closed queuing network model of a
NOW is considered. P = 16 homogeneous workstations
are available, each serving its own queue. A high-speed
network connects the distributed nodes. This is a
representative model for many existing departmental
networks of workstations.
 A multi-server disk center is included in the system.
Since files can be stripped across a variable number of
disks, a natural way to capture stripped tasks is by using a
fork-join system. Each I/O request forks in sub-requests
that are served by parallel disk servers. Although the I/O
subsystem consists of an array of disks, it is modeled as a
single I/O node with a given mean service time. Since we
are interested in a system with balanced program flow, an
I/O subsystem with the same service capacity as the
processors is considered.

Proceedings of the 34th Annual Simulation Symposium (SS �01)
1080-241X/01 $10.00 © 2001 IEEE

 The degree of multiprogramming N is constant during
each simulation run. N jobs circulate alternately between
the processors and the I/O subsystem. The configuration
of the model is shown in Figure 1.

����

�

�

�

�

�����	
�����

�

�

�

�

Figure 1. The queuing network model

 The jobs examined are highly independent. For
example, once a job commences execution, no job ever
idly waits for communication with (i.e., synchronizes
with) other jobs.
 We consider the problem of resource management in a
NOW, and focus on load sharing as an efficient strategy
to improve throughput. However, the load sharing activity
comes at the expense of useful computation, incurs com-
munication overhead, and consumes memory space to
maintain load sharing information.
 Our study examines various methods of allocating
jobs for load sharing using simulation. Traditional
methods of scheduling are compared with epoch sche-
duling. The scheduling policies (described next) are
probabilistic, deterministic, and adaptive. In the adaptive
case, job migration is performed for load sharing. This is
a receiver-initiated load sharing method. Our research
seeks to enhance system performance in terms of through-
put by dynamic load sharing.
 When a job is transferred to a workstation for remote
processing, the job incurs a communication cost. In this
model, only jobs in the scheduling queue are transferred.
The latest-job-arrived selection policy is used to select a
job for transfer from the sending workstation to the
receiver workstation. We believe that the average transfer
cost for a nonexecuting job, although nonegligible, is
quite low relative to the average job processing costs. The
communication channel is modelled as a single server
queuing system, whose service time is an exponentially
distributed random variable, with mean Co, in order to
deal with the effects of communication overhead. The
benefits of migration depend on migration costs.

When jobs leave a workstation, they request service
on the I/O subsystem. The I/O queuing discipline is
FCFS.
 A technique used to evaluate the performance of the
scheduling disciplines is experimentation using a
synthetic workload simulation. In studies like this, the use
of synthetic workloads is usually necessary because real
workloads cannot be simulated efficiency and real
systems with actual workloads are not normally available
for experimentation. Also, useful analytic models are
difficult to derive because subtleties between various
disciplines are difficult to model.
 The workload considered here is characterized by
three parameters:

. The distribution of processor service time.
. The distribution of I/O service time.
. The degree of multiprogramming.

 Processor and I/O service times are independent and
identically distributed (IID) exponential random variables
with means of m and k respectively.

 All notations used in this paper appear in Table 1.

2.2 Job scheduling policies

 The following scheduling strategies are employed in
our simulations.

• Probabilistic (Pr)
 With this policy, a job is dispatched randomly to one

of the workstations with equal probability. The job
dispatcher chooses one of the P workstations based on
the outcome of an independent trial in which the ith

outcome has probability pi = 1 / P. Then the FCFS
policy is applied. Therefore, with this method the
scheduler is never activated to make decisions which
depend on system state.

• Probabilistic with Migration (PrM)
 Jobs are assigned to processor queues in the same way

as in the Pr case. However, when a processor becomes
idle and there are jobs waiting at the other processor
queues, a job migrates from the most heavily loaded
processor to the idle processor. This is a receiver-
initiated algorithm, since load-distributing activity is
initiated by an idle node (receiver), which tries to get a
job from an overloaded node (sender). For stability
reasons, sender nodes can only have a queue length
greater than one. This policy activates the scheduler
only when a processor becomes idle.

• Shortest Queue (SQ)
 With this strategy, a job is assigned to the shortest

Proceedings of the 34th Annual Simulation Symposium (SS �01)
1080-241X/01 $10.00 © 2001 IEEE

processor queue. Therefore the scheduler is activated
every time a job arrives. Each job is entered into its
assigned queue in the order of its arrival.

• SQ with Migration (SQM)
 This is a variation of SQ, where migration takes place

in the same way as in PrM. Therefore with this
strategy the scheduler is called on job arrival and also
when a processor becomes idle after a job departure.

• Epoch Load Sharing (ELS)
 With this policy, load is evenly distributed among

workstations using job migration which occurs only at
the end of predefined intervals called epochs. At the
end of an epoch, the scheduler collects information
about the status of all workstation queues, evaluates
the mean of all queue lengths, and places processor
queue lengths into increasing order in a table. Then it
moves jobs from the most heavily loaded processors to
the lightly loaded ones until either all processors have
queue lengths equal to the mean or some of them differ
at most by one job.

 All five of the above scheduling schemes have merit.
Pr is the simplest method since it involves only a
negligible amount of overhead when generating random
numbers. It is apparent that Pr results in suboptimal
performance. However, this method never activates the
scheduler as it does not need decisions that depend on
system state. The SQ method requires global knowledge
of queues on job arrival and so the scheduler is called
upon to make decisions every time a job arrives. The
migratory versions of these policies invoke the scheduler
when a processor becomes idle and they also involve
overhead each time a job migrates. The migration
overhead is taken into account in this study. Therefore, a
major concern is the number of times the system
scheduler is called to collect information about processor
queues in order to manage the information and to make
transfer decisions.
 The collection and management of global load
information as well as transfer decision making require
non-trivial amounts of overhead. However, this overhead
is necessary to implement even a moderately effective
scheduler. In this study, the parameter that reflects the
scheduling policy complexity is the number of times that
the scheduler is activated to make decisions which depend
on system state.

2.3 Performance metrics

 Parameters used in simulation computations (pre-
sented later) are shown in Table 1.

Table 1: Notations

N Degree of multiprogramming

m Mean processor service time

k Mean I/O service time

R System throughput

NSA Number of times that the system
Scheduler is Activated

DR Relative (%) increase in R when one of the
above described methods is employed
instead of the Pr policy

DNSA Relative (%) decrease in NSA when one of
the above described methods is employed
instead of the SQ policy

Co Mean communication delay due to job
migration

3. Simulation results and discussion

3.1 Model implementation and input parameters

 The queuing network model described above is
implemented with discrete event simulation ([7]) using
the independent replication method. For every mean
value, a 95% confidence interval was evaluated. All
confidence intervals were found to be less than 5% of the
mean values.
 A balanced system with m=1.0 and k = 0.0625 was
considered.
 The degree of multiprogramming N was 16, 32, 48,
64, and 80. The reason for examining different degrees of
multiprogramming is that it is a critical parameter in
determining system load.
 Epoch size was 1, 2, 4, and 8. We chose epoch length
1 as a starting point for the experiments because the mean
processor service time is equal to 1, and also because with
this epoch size NSA was smaller than in the SQ case. We
expected that larger epoch sizes would result in even
smaller NSA.
 Mean communication delay Co was 0.1, 0.2, 0.25, 0.5.
That is, we chose mean communication delay equal to
m/10, m/5, m/4, and m/2. These are reasonable choices for
low to high communication delays because we considered
the migration of non executing jobs.

3.2 Performance analysis

 Only the following results are presented due to space
limitations. These results represent the overall relative
performance of the different policies very accurately.

Proceedings of the 34th Annual Simulation Symposium (SS �01)
1080-241X/01 $10.00 © 2001 IEEE

. In Figures 2, 5, 8, 11: R versus N, for Co = 0.1, 0.2,

0.25, and 0.5 respectively.
. In Figures 3, 6, 9, 12: DR versus N, for Co = 0.1, 0.2,

0.25, and 0.5, respectively.
. In Figures 4, 7, 10, 13: DNSA versus N, for Co = 0.1,

0.2, 0.25, and 0.5 respectively.

 Simulation results demonstrate the following:
 In all cases, the overall performance in terms of
system throughput is superior with the SQ and SQM
methods. Actually, these two methods produce close to
the same throughput. This is due to the fact that in the SQ
case jobs are always assigned to the shortest queue, so it
is probable that the load is evenly distributed among pro-
cessors. Therefore, there are only rare opportunities for
migration. In the SQM case, when migration occurs to an
idle processor, the next arriving job will be dispatched to
another idle processor because of the shortest queue
criterion.
 The superiority of the SQ method is intuitive.
However, the intent of this study is to determine how
much better it is when compared with other methods, and
if the extent of its superiority justifies overhead required
to maintain knowledge of processor queue lengths.
 The worst method is the probabilistic policy Pr. The
difference in performance between SQ and Pr decreases
with increasing N. For N = 16, DR is about 67%, while for
N=80, DR is about 19%. The migration of jobs when using
PrM significantly improves overall performance as
compared with Pr. This is because using the Pr policy
there are cases where processors have unbalanced queues.
For all N and all Co, the difference in performance
between PrM and Pr methods varies between 15% and
36%.
 For all epoch sizes, epoch load sharing performs better
than Pr. Performance in terms of throughput improves
with decreasing epoch size.
 For each epoch size the performance deteriorates with
increasing Co. The deterioration is larger for smaller
epoch sizes than for larger ones. However, in all cases the
deterioration is very slight. For epoch size 8, R is almost
the same for all Co. Co affects the performance of the
PrM method more than the performance of the epoch
policy. However, even in the PrM case the difference in
performance due to varying Co is not significant. For
example, in the PrM case for N = 32, when Co increases
from 0.1 to 0.5, then the relative decrease in R is about
5%. This is the largest difference observed as a result of
varying Co in all of the cases examined.
 For Co = 0.1, N = 64, and N = 80, the PrM and SQ
algorithms perform very close to ELS for epoch sizes 1
and 2. However, as Co increases, with these degrees of
multiprogramming, the decrease in R is larger in the PrM
case than in the ESL case. For Co = 0.5, and N = 64 and

80, PrM performs worst than ELS (for epoch sizes 1 and
2) while ESL still performs close to SQ.
 For all Co and for all N, the relative decrease in the
number of scheduler activations (DNSA) is very high with
all epoch sizes (i.e., in the range 89-99%). DNSA is lower
in the PrM case (in the range 66% – 86%). NSA is slightly
larger in the SQM case than in the SQ case due to job
migration.
 For any Co and for any N, DNSA increases with
increasing epoch size. For a given epoch size and a given
N, DNSA is almost the same for all Co.
 As was already mentioned, for N = 64, and 80, and for
all Co, ELS performs close to SQ for epoch sizes 1 and 2.
DNSA in this case is not much smaller than the DNSA of the
4, and 8 epoch size cases. From the point where N = 48,
as N decreases ELS starts to decline with SQ. For N ≤ 48,
PrM performs better than ESL but in many cases its
superiority over ESL is not significant if overhead is
considered. Actually, there are cases where DNSA is much
higher in the ESL case than in PrM. For N=16, the SQ
method performs much better than all other methods.
Therefore, even though the overhead that this method
incurs can degrade its superiority, its performance is
expected to remain high in comparison with other
methods.
 In all cases, system load (mean workstation utilizati-
on) varied between 0.50 (Pr, N=16) and 0.99 (SQ, N=80).

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

16 32 48 64 80

N

8

10

12

14

16
R

Pr PrM SQ

SQM Epoch=1 Epoch=2

Epoch=4 Epoch=8

� � �

� � �

� �

Figure 2. R versus N, Co =0.1

16 32 48 64 80

N

0

10

20

30

40

50

60

70

PrM SQ SQM Epoch=1 Epoch=2 Epoch=4 Epoch=8

DR

Figure 3. DR versus N, Co =0.1

Proceedings of the 34th Annual Simulation Symposium (SS �01)
1080-241X/01 $10.00 © 2001 IEEE

16 32 48 64 80

N

0

20

40

60

80

100

120

-20

Pr PrM SQM Epoch=1 Epoch=2 Epoch=4 Epoch=8

DNSA

Figure 4. DNSA versus N, Co = 0.1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

16 32 48 64 80

N

8

10

12

14

16
R

Pr PrM SQ

SQM Epoch=1 Epoch=2

Epoch=4 Epoch=8

� � �

� � �

� �

Figure 5. R versus N, Co =0.2

16 32 48 64 80

N

0

10

20

30

40

50

60

70

PrM SQ SQM Epoch=1 Epoch=2 Epoch=4 Epoch=8

DR

Figure 6. DR versus N, Co = 0.2

16 32 48 64 80

N

0

20

40

60

80

100

120

-20

Pr PrM SQM Epoch=1 Epoch=2 Epoch=4 Epoch=8

DNSA

Figure 7. DNSA versus N, Co = 0.2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

16 32 48 64 80

N

8

10

12

14

16
R

Pr PrM SQ

SQM Epoch=1 Epoch=2

Epoch=4 Epoch=8

� � �

� � �

� �

Figure 8. R versus N, Co =0.25

16 32 48 64 80

N

0

10

20

30

40

50

60

70

PrM SQ SQM Epoch=1 Epoch=2 Epoch=4 Epoch=8

DR

Figure 9. DR versus N, Co = 0.25

16 32 48 64 80

N

0

20

40

60

80

100

120

-20

Pr PrM SQM Epoch=1 Epoch=2 Epoch=4 Epoch=8

DNSA

Figure 10. DNSA versus N, Co = 0.25

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

16 32 48 64 80

N

8

10

12

14

16
R

Pr PrM SQ

SQM Epoch=1 Epoch=2

Epoch=4 Epoch=8

� � �

� � �

� �

Figure 11. R versus N, Co =0.5

Proceedings of the 34th Annual Simulation Symposium (SS �01)
1080-241X/01 $10.00 © 2001 IEEE

16 32 48 64 80

N

0

10

20

30

40

50

60

70

PrM SQ SQM Epoch=1 Epoch=2 Epoch=4 Epoch=8

DR

Figure 12. DR versus N, Co = 0.5

16 32 48 64 80

N

0

20

40

60

80

100

120

-20

Pr PrM SQM Epoch=1 Epoch=2 Epoch=4 Epoch=8

DNSA

Figure 13. DNSA versus N, Co = 0.5

4. Conclusions and further research

 This paper studies load sharing policies in a network
of workstations. Simulation is used to generate results
needed to compare different configurations.
 A new policy called Epoch Load Sharing (ELS) is
proposed. Its performance is compared with other
scheduling methods for different epoch sizes, different
migration overhead, and for various degrees of multipro-
gramming N.
 Simulation results reveal the following:

. For all levels of migration overhead, all N, and for all

epoch sizes, ELS involves much less overhead than
the shortest queue (SQ) policy, and involves less
overhead than the Probabilistic Migratory (PrM)
method, in terms of the collection of global system
information.

. For high loads, ELS with small epoch size is preferred
since it performs very close to the SQ method.

. For moderate loads, in some cases the PrM method is
best while in other cases ESL with a small epoch size
is preferred.

. For light loads, the SQ method is recommended.

 This paper is a case study. It can be extended to cases
where:

. An estimate of job service time is known in advance
and can be considered, so that very small jobs will not
be migrated.

. Epoch load sharing is applied in a heterogeneous
NOW.

References

[1] B.A. Blake, “Assignment of Independent Tasks to Minimize
Completion Time”, Software-Practice and Experience,
Vol.22(9), John Wiley & Sons, Inc., New York, 1992, pp. 723-
734.

[2] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “A Comparison
of Receiver-Initiated and Sender-Initiated Adaptive Load
Sharing”, Performance Evaluation, Vol.6, Elsevier Science
Publishers B.V., Amsterdam, 1986, pp. 53-68.

[3] M. Harchol-Balter, and A.B. Downey, “Exploiting Process
Lifetime Distribution for Dynamic Load Balancing”, In
Proceedings of Sigmetrics ’96, ACM, Philadelphia, May 23-26,
1996, pp. 13-24.

[4] H.D. Karatza, “Simulation Study of Sender-Initiated Load
Sharing with Resequencing”, In Proceedings of Summer
Computer Simulation Conference, SCSC’96, SCS, V.W. Ingalls,
J. Cynamon, and A.V. Saylor (editors), SCS, Portland, Oregon,
July 21-25, 1996, pp. 497-501.

[5] H.D. Karatza, “Sender-Initiated versus Receiver-Initiated
Adaptive Load Sharing with Resequencing”, In Proceedings of
the 8th European Simulation Symposium & Exhibition, SCS, A.
Bruzzone and E. Kerckhoffs (editors), Genoa, Italy, October 24-
26, 1996, pp. 546-550.

[6] H.D. Karatza, “Assignment of programs in a Distributed
System with Resequencing”, In Proceedings of the 31th Annual
Simulation Symposium, IEEE Computer Society Press, Boston,
MA, April 5-9, 1998, pp.34-41.

[7] Law, A., and D. Kelton, Simulation Modelling and Analysis,
McGraw-Hill, New York, 1991.

[8] C. McCann, and J. Zahorjan, “Scheduling Memory
Constraint Jobs on Distributed Memory Parallel Computers”, In
Proceedings of the 1995 ACM Sigmetrics Conference, ACM,
Ottawa, Canada, May 15-19, 1995, pp. 208-219.

[9] E. Rosti, G. Serazzi, E. Smirni, and M. Squillante, “The
Impact of I/O on Program Behaviour and Parallel Scheduling”,
In Proceedings of SIGMETRICS 98, ACM, Madison, WI, June
1998, pp. 56-65.

Proceedings of the 34th Annual Simulation Symposium (SS �01)
1080-241X/01 $10.00 © 2001 IEEE

