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Abstract

In distributed systems job scheduling is a difficult problem.
In this work we study a special type of scheduling called
gang scheduling under which jobs consist of a number of
interacting tasks which are scheduled to run simultane-
ously on distinct processors. The performance of various
gang scheduling schemes is studied and compared for a
variety of workloads. The main objective of the processor
schedulers is to achieve high overall system throughput
while at the same time providing some guarantee for the
performance of individual jobs in the system.

1. Introduction

In distributed systems there is a growing need for good
schedulers that will manage the distributed nodes. How-
ever, it is not obvious how to partition the computing nodes
of the distributed system among competing jobs. One idea,
is gang scheduling, that is the case where a set of tasks are
scheduled to execute simultaneously on a set of processors.
It allows the tasks to interact efficiently by using busy
waiting, without the risk of waiting for a task that currently
is not running. Without gang scheduling, tasks have to
block in order to synchronise, thus suffering the overhead
of a context switch.

The code to simultancously schedule all the tasks of
each gang might be overly complex requiring elaborate
bookkeeping and global system knowledge. Because gang
scheduling demands that no task execute unless all other
gang member tasks execute, then some processors may be
idle even when there are tasks waiting to be run.

At any time there is a one-to-one mapping between
tasks and processors. We emphasise that although the total
number of tasks in the system may be larger that the num-
ber of processors, no gang contains more tasks than proces-
sors. We assume that all the tasks within the same gang

execute for the same amount of time, i.e., that the compu-
tational load is balanced between them.

This is clearly different from the task level models ([2],
[9]), in which, after a job arrives to the system, it is imme-
diately split into component tasks, and these tasks will be
processed on any processor in any order as long as the
precedence constraints are not violated.

A number of gang scheduling policies for distributed
systems and multiprogrammed parallel systems have been
proposed already, each differing in the way resources are
shared among the jobs ([1], [3], [4], [5], [6], [7], [8], [13],
[14], [15]). These works study the influence of gang sched-
uling on processors performance. They do not explicitly
model the I/O processing, although it can significantly in-
fluence the overall system performance. However, sched-
uling is not an isolated issue. It is but one service provided
by the operating system. The solution to the scheduling
problem must be integrated with solutions to other prob-
lems, e.g. I/O management. The different parts of the sys-
tem must work together to create a cohesive whole in a way
that makes sense.

Coscheduling of tasks in a closed queueing network
model is studied in [10]. A shared memory partitionable
parallel processing system is considered in this work and
resequencing of jobs is required after processor service.
Eager (work-conserving) versus lazy (non-work-conser-
ving) scheduling policies are studied and compared over a
wide range of system parameters.

Numerous scheduling disciplines have been proposed
for multiprocessor systems, the evaluation of which, for
the most part, was conducted on workloads with a rela-
tively small variability in task processing requirements.
However, high performance computer centers have report
that their service time coefficient of variation can in fact be
greater than one.

In this work we study gang scheduling in a closed
queueing network model of a distributed system where we



incorporated 1/O equipment. The design choices that are
considered include different ways to schedule gangs for
execution. We compare the performance of three gang
scheduling policies for various coefficients of variation of
the processor service times and for different degrees of
multiprogramming. To our knowledge, such an analysis of
gang scheduling has not appeared in the research literature.

This paper is theoretical in the sense that the results are
obtained from simulation studies instead of from measure-
ments of real systems. Nevertheless, we believe that the
results we present are of practical value. All algorithms we
study are practical in that they can be implemented. Al-
though we do not derive absolute performance predictions
for specific systems and workloads, we study the relative
performance of the different gang scheduling algorithms
across a broad range of workloads and analyze how
changes in the workload affect performance.

For simple idealized systems, performance models can
be mathematically analyzed using queueing theory to ob-
tain performance measures. Our system, in addition to ex-
ponential distribution for job execution times, involves
Branching Erlang and Erlang-k distributions. Also, it in-
volves scheduling policies with different complexities. For
complex systems analytical modelling typically requires
additional simplifying assumptions, and such assumptions
might have unforseeable influences on the results. There-
fore, research efforts have been devoted to finding ap-
proximate analysis, to developing tractable models in spe-
cial cases, and to conducting simulations. We chose simu-
lations because it is possible to simulate the system under
study in a direct manner, thus lending credibility to the
results. Detailed simulation models help determine per-
formance bottlenecks in architecture and assist in refining
the system configuration.

The structure of the paper is as follows. Section 2.1
specifies system and workload models, section 2.2 de-
scribes the job scheduling policies and section 2.3 presents
the metrics employed in assessing the performance of the
scheduling policies we study. Model implementation and
input parameters are described in section 3.1 while the re-
sults of the simulation experiments are presented and ana-
lysed in section 3.2. Finally the last section concludes with
several comments and gives directions for further research.

2. Model and methodology

2.1 System and workload models

A closed queuing network model of a distributed sys-
tem is considered. There are P = 8 homogeneous and inde-
pendent processors each serving its own queue. This is a
reasonable choice for the current existing medium-scale

departmental networks of workstations. It is believed that
qualitative results for other numbers of processors, even for
large-scale distributed, are similar for the data demon-
strated here. The distributed nodes are interconnected by a
high speed network with negligible communication delays.

The degree of multiprogramming N is constant during
the simulation experiment. A fixed number of jobs N is
circulating alternatively between the processors and the 1/0
unit. Neither arrivals nor departures are permitted while
the system is under observation. The configuration of the
model is shown in Figure 1.

A

Figure 1. The queuing network model.

Since we are interested in a system with balanced pro-
gram flow, we have considered an I/O channel which has
the same service capacity as the processing unit.

The technique used to evaluate the performance of the
scheduling disciplines is experimentation using a synthetic
workload simulation. In studies like this, one is usually
required to use synthetic workloads because real workloads
cannot be simulated efficiency enough and real systems
with actual workloads are not available for experimenta-
tion. Also, useful analytic models are difficult to derive
because the subtleties between various disciplines are diffi-
cult to model and because the workload model is quite
complex.

The workload considered here is characterised by three
parameters: the distribution of gang sizes, the distribution
of execution times, and the degree of multiprogramming.
We assume that there is not correlation between the differ-
ent parameters. For example, a small gang may have a long
execution time.

Jobs consist of a set of » = 1 tasks and each task re-
quires one processor to execute. Jobs are characterised by a
probability distribution of the number of processors re-
quired. The number of processors demanded by job x is
represented as p(x), which is called the “size” of job x. We



call a job “small” (“large”) if it requires a small (large)
number of processors respectively. Each time a job returns
from /O service to distributed processors, it needs a differ-
ent number of processors for execution, that is its degree of
parallelism is not constant during its lifetime in the system.

Each task of a job is routed to a different processor for
execution. The routing policy is that tasks enter the shortest
queues. Tasks in processor queues are examined in order
accordingly to the scheduling policy. A job x starts to exe-
cute only if all p(x) processors assigned to it are available.
Otherwise, all tasks of job x wait in the assigned queues.
When a job finishes execution, all processors assigned to it
are released. Jobs x;, x», ... x; can be executed simultane-
ously if and only if p(x))+tp(x)+.... tp(x) <= P.

We assume that job sizes are uniformly distributed in
the range of [1..8]. We have chosen the uniform distribu-
tion because it has a reasonable large deviation and there-
fore more facts about system behaviour can be revealed.
The number of jobs which can be processed in parallel
depends on job sizes and on the scheduling policy applied.
As in most studies we assume that the overhead for the
scheduling algorithms is negligible.

We also investigate the impact of the variability in job
service demand on system performance. A high variability
in job service demand implies that there is proportionately
a high number of service demands that are very small com-
pared to the mean service time and a comparatively low
number of service demands that are very large. When a job
with a long service demand enters the system and starts
execution, it will occupy a number of processors for a long
time and depending on the scheduling policy applied it may
introduce inordinate queuing delays for the other jobs
waiting for service.

The parameter which represents the variability in job
execution times is the coefficient of variation of execution
times (C). This is the ratio of the standard deviation of job
execution time to its mean. We examine the following
cases:

. Job execution times have an Erlang-k distribution with
k=2 and are 1ID. The coefficient of variation is C = 1
/\/E <1 and the mean is m.

« Job execution times are independent and identically dis-
tributed (IID) exponential random variables with mean
m.

. Job execution times have a Branching Erlang distribu-
tion ([12]) with two stages and are 1ID. The coefficient
of variation is C, where C > 1 and the mean is m.

A job after processor service requests service from the
1/0 unit. The /0 queuing discipline is FCFS. The /O

service times are exponentially distributed with mean &
and are 1ID.
All notations used in this paper are presented in Table

2.2 Job scheduling policies

The performance of programs which consist of parallel
tasks is significantly affected by the choice of the policy
used to schedule tasks. In this work we assume that the
scheduler has perfect information when making decisions,
i.e. it knows the exact number of processors required by all
jobs. Also, the task dispatcher knows the exact length of all
queues and sends tasks to the shortest queues, one task per
queue.

We analyse the performance of the following gang
scheduling policies:

o First Come First Served (FCFES). When a job after 1/O
service asks processor service, then: if all processors as-
signed to it are idle and there are not any other tasks in
these processors queues, this job starts execution. Other-
wise all tasks of that job enter processor queues.

When a job x leaves the system, the p(x) processors
assigned to it are released. Then the queues of these proc-
essors, and also the queues of the idle processors are ex-
amined. If there are jobs whose all tasks are in the first
position in these queues, then these jobs start execution. A
job whose at least one task is not in the first position of a
queue, does not start execution.

Unfortunately, FCFS scheduling by its nature is conser-
vative in scheduling. Tasks may be kept in queues even if
the corresponding processors are idle. We can modify the
FCFS scheduling algorithm so that small jobs are proc-
essed early instead of letting them waiting behind large
jobs.

o Adapted FCFS (A-FCES) attempts to schedule a job
whenever the processors assigned to its tasks are available.
When there are no enough processors available for a large
job whose tasks are waiting in the front of the queues, A-
FCFS policy schedules smaller jobs whose tasks are behind
the tasks of the large job, so that the average response time
could be reduced.

One major problem with this scheduling policy is that it
tends to favour those jobs requesting a smaller number of
processors and thus may increase the fragmentation in the
system.

o Largest-Job-First-Served (LJFS). With this policy tasks
are placed in increasing job size order in processor queues
(tasks that belong to larger gangs are placed ahead in the
queues). All tasks in queues are searched in order, and the
first jobs for which the assigned processors are available



start execution. This method tends to improve the perform-
ance of large, highly-parallel jobs at the expense of smaller
jobs, but in many computing environments this discrimina-
tion is acceptable, if not desirable. For example, supercom-
puter centers have a mandate to run large, highly-parallel
jobs that cannot run anywhere else.

2.3 Performance metrics

Consider the following definitions:

o Response time of a random job is the interval of time
from the dispatching of this job tasks to processor queues
to service completion of this job (time spent in processor
queues plus time spent in service).

o Cycle time of a random job is the time that elapses be-
tween two successive processor service requests of this job.
In our model cycle time is the sum of response time plus
queuing and service time at the 1/O unit.

Parameters used in later simulation computations are
presented in Table 1.

Table 1. Notations

RT mean response time

K mean cycle time

R system throughput rate

Ucpy mean processor utilisation
Uro mean I/O unit utilisation

N degree of multiprogramming
C coefficient of variation

m mean job execution time

k mean I/O service time

In our model the external performance is determined by
the system throughput rate (system performance) and the
mean cycle time (program performance). Internal effi-
ciency is primarily determined by the mean processor utili-
zation because it represents the level of contention for the
most critical system resources.

FCFS is used as a comparison measure between the
performance of the A-FCFS and LJFS policies. The model
works first with the FCFS policy and then with one of the
other two policies. The relative performance parameters are
calculated on a percentage basis as follows:

Dpyr . relative decrease in RT

Dy : relative decrease in K
Dy . relative increase in R

3. Simulation results and discussion

3.1 Model implementation and input parame-
ters

The queuing network model was simulated with dis-
crete event simulation models ([11]) using the independent
replications method. For every mean value a 95% confi-
dence interval was evaluated. All confidence intervals were
found to be less than 5% of the mean values.

We considered a balanced system with m=1.0 and &£ =
0.563. The reason we have chosen £=0.563 for balanced
program flow is that at the processors there are on average
4.5 parallel tasks per job. So, when all processors are busy,
an average of 1.778 jobs are served each unit of time. This
implies that 1/O mean service time must be equal to 1/1.778
= 0.563 if the I/O unit is to have the same service capacity.

The system was examined in cases of job execution
times with Erlang-k distribution with =2 (C = 1 /+/2 =
0.707 ), exponential (C = 1), and Branching Erlang for C =
2, 4.

The degree of multiprogramming N was taken as 2, 4,
6, 8, 10. The reason we have examined various numbers of
programs N is because this is a critical parameter which
reflects system load.

3.2 Performance analysis

Due to space limitations, only the following results are
presented, but they are representative of the overall model
performance:

o In Tables 2-6 performance parameters of the C=1 case
are presented.

« In Figures 2-9 system throughput rate and mean cycle
time are plotted versus N in all cases examined.

Our results show the following:

For N=2 all policies perform the same as there can be at
most one job waiting for processor service.

For N>2 the performance in terms of mean cycle time
(K) and throughput rate (R), is superior with the A-FCFS
and LJFS scheduling policies. This is due to the fact that
with the FCFS policy a large job waiting for some proces-
sors to be freed may cause long delays to other smaller
jobs. During that time it is most probable for the I/O unit to
remain idle and then to be supplied with many jobs that
are forced to delay in its queue. A-FCFS and LJFS alleviate



this problem, yielding lower R7 than FCFS, which results
in lower mean cycle time and higher system throughput.

In most of the cases LIFS performs slightly better than
A-FCFS. However, LJFS needs an extra overhead for the
reordering of tasks in the queues which is not modelled in
this work.

The superiority of A-FCFS and LJFS over FCFS is in-
creasing with increasing N. This is due to the fact that at
high N there are more tasks in the queues and therefore
there are more opportunities to exploit the advantages of
A-FCFS and LJFS. For low N the superiority is not signifi-
cant while for A=10 is considerable. For example with
LJFS and for N=4 we have D;, =3.45% while for N=10 we
have Dy = 16.83%.

For all &, the difference in performance between FCFS
and each of A-FCFS and LJFS is decreasing with increas-
ing C. This is due to the fact that as C increases the vari-
ability in job execution time increases too. Therefore at
high C the probability for large jobs (jobs with many tasks)
to cause long delays to smaller jobs is small because it is
most probable for service times to be very small. So, at
high C the advantages of A-FCFS and LJFS are not com-
pletely exploited.

4. Conclusions and further research

In this work we studied gang scheduling on a distrib-
uted system. We used simulation as the means of obtaining
results.

Three gang scheduling policies were considered. First
Come First Served (FCFS), Adapted-FCFS (A-FCFS), and
Last-Job-First-Served (LJFS). Their performance was
studied and compared for various degrees of multipro-
gramming N and coefficients of variation C of task execu-
tion times.

The simulation results reveal the following;

« In all cases examined A-FCFS and LJFS performed
better than FCFS.

o A-FCFS performed very close to LJIFS. Actually, in

most of the cases LIFS performed only slightly better
than A-FCFS.

« The superiority of A-FCFS and LJFS over FCFS is in-
creasing with increasing N and is decreasing with in-
creasing C.

Both A-FCFS and LJFS policies have their merits.
System fragmentation can be reduced with LJFS. However,
there is an overhead involved with LIFS, due to reordering
of tasks in the queues which is not modelled in this work.
For these reasons we believe that A-FCFS method should

be used as it is easier to implement and it performs very
close to LJFS.

This work is a case study. It should be extended to the
following directions:

. Different job size distributions to be considered at
larger distributed systems.

« System behaviour to be investigated in the presence of
processor failures.

Table 2. C=1, FCFS case

N | Upy | Uo | RT K R
2 0.529| 0.531| 1.342] 2.099( 0.953
4 0.617| 0.618| 2.483| 3.606| 1.109
6 0.637| 0.633| 3.890| 5.281| 1.136
8 0.636| 0.638| 5.459| 6.990( 1.145
10 0.637| 0.633| 7.268| 8.799| 1.136
Table 3. C=1, A-FCFS case

N | Upy | Uo | RT K R

2 0.529| 0.531| 1.342| 2.099( 0.953
4 0.645| 0.640| 2.387| 3.485| 1.148
6 0.684| 0.685| 3.477| 4.884| 2.229
8 0.707| 0.701| 4.776| 6.364| 1.257
10 0.723| 0.719( 5.977| 7.752| 1.290

Table 4. C=1, LJFS case

N | Upy | Uo | RT K R

2 0.529| 0.531| 1.342| 2.099( 0.953
4 0.641| 0.640( 2.362| 3.486| 1.147
6 0.694| 0.687| 3.441| 4.868| 1.232
8 0.716| 0.711| 4.588| 6.275| 1.275
10 0.739| 0.740| 5.672| 7.532| 1.328




Table 5. C=1, FCFS versus A-FSCS

N Dgy Dy Dy
2 0.00( 0.00( 0.00
4 3.86( 3.36( 3.47
6 10.63| 7.52| 8.14
8 12501 895| 9.83
10 17.76] 11.90| 13.51

Table 6. C=1, FCFS versus LJFS
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