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the interconnected learning automata. The genetic adaptation afith] D. B. Fogel,Evolutionary Computation: Toward a New Philosophy of
population-based approach also helps the interconnected Iearniné; Machine Intelligence Piscataway, NJ: IEEE Press, 2000.

automata to escape from local optima. The system seems to Hed
particularly beneficial to problems involving large action spaces

] G. Syswerda, “Uniform crossover in genetic algorithms,Piroc. 3rd
Int. Conf. Genetic Algorithms). D. Schaffer, Ed. San Mateo, CA:
Morgan Kaufmann, 1989, pp. 2-9.

where improved convergence is most required. [21] W. M. Spear and K. A. De Jong, “An analysis of multipoint crossover,”
Due to the high degree of variability inherent at the initial stages of ~ in Foundations of Genetic Algorithms. J. E. Rawlins, Ed. San
the GLA, the influence to which the crossover operator has on the pozéz] Mateo, CA: Morgan Kaufmann, 1991, pp. 301-315.
fi

ulation is difficult to assess and further studies need to be undertak

T. Back, “Selective pressure in evolutionary algorithms: A characteriza-
tion of selection methods,” iRroc. 1st IEEE Conf. Evolutionary Com-

to determine if it is, as expected, providing a valuable role. The small  putation Piscataway, NJ: IEEE Press, 1994, pp. 57-62.
study performed here does indicate that it performs a useful functiof23] D. B. Fogel and A. Ghozeil, “A note on representations and variation
with uniform crossover giving superior convergence results in some_ _ operators,IEEE Trans. Evol. Compytvol. 1, no. 2, pp. 159-161, 1997.

instances. ]

Z. Michalewicz,Genetic Algorithms- Data Structures= Evolutionary
Programs New York: Springer-Verlag, 1992.

Furthermore, a learning automata rule which is ergodic and with @51 p_ . Ackley, “An empirical study of bit-vector function optimization,”
absorbing states, such as the linear reward/penalty, may be better suited in Genetic Algorithms and Simulated Annealihg Davis, Ed. New
to the genetic adaptation of learning automata for some environments  York: Pitman, 1987, pp. 170-204. ) )
such as nonstationary ones. Further work will also provide a firm the[26] L. J. Eshelman and J. D. Schaffer, “Crossover's niche,Pioc. 5th

oretical basis for the convergence of the GLA.
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(QoS) satisfying the diverse requirements of applications. During thenning atR Mb/s. Ports are interconnected over a shared bus (as de-
last couple of years, new network technologies, such as Packet guieted in Fig. 1) running aB Mb/s. Therefore, the bus has a speed-up
SONET and Gigabit Ethernet, were introduced and widely deployéactor of S = B/R, whereS is an integer. It will be shown in Sec-
in the core of large ISPs, providing higher bandwidth connectioniéon IV that S can be less thatV, but not much smaller. Each input
However, ATM remains one of the main network technologies iand output port has a buffer with a capacity(@fcells, which is nec-
campus networks and in the access network connecting campugesary due to the speed-up factosof> 1 and the absence of central
metropolitan networks to the core networks. arbiter.

Extensive research efforts have been focused on ATM switching sysEach input port is equipped with a discretized learning automaton

tems. Based on the architecture of the switch fabric, ATM switches cHBl-[16]. The V' learming automata, operate concurrently to offer a
be divided into the following four categories [1]. distributed arbitration scheme. The exact operation of the learning

. . . automata is described in the following subsection. A numbeNof
1) Shared-memory switche&xamples of industry products include . . .
learning automata, one for each input port, are used instead of one

Cisco’s lightstream and catalyst product families [2] and Mar- . . . . . .
. . central learning automaton, in order to avoid having a single point of
coni's ASX p_roduct_famlly [3] . failure and avoid delay and complexity due to communication between

2) Shared-medium swltchdéxamples can be found in [4] gnd [5] the bus arbitrator (LA) and the input ports.

Moreover_, Marco_nl ASX-4000 [3] uses a TDM bus FO Intercon- g proposed architecture has the following characteristics:
nect multiple “switch control processors” installed in the same
chassis.

3) Fully interconnected switche¥he crossbar switch is the most
common architecture of this category. Variations of the crossbar
switch can be found in [6] and [7].

4) Space-division switches or multistage interconnection networks
(MINs): Numerous switches belonging to this category were pre-
sented in the literature (e.g., [8]-[12]). Most of them are based
on the Banyan multistage interconnection network.

Although a lot of research has been conducted on space-divisf%‘n-rhe LABA Scheme

switches, industry still shows that shared-medium and shared-memonAs mentioned above, the bus arbitration scheme is based on
architectures are preferable due to the ease of implementation and lea/ning automata, which are initialized simultaneously, operate con-
hardware complexity and cost. currently and independently, and use as the only feedback information

Bus arbitration schemes can be divided into two main categoriesthe fact of whether a cell was transmitted over the bus by the input

1) Schemes with central arbitrator or “queues-state dependent.” ngrt that was granted permission to transmit in the previous time slot.

gorithms used in such schemes use a central arbiter and haVl%y‘,iusmg the same feedback information, they grant permission to the

. i . ._same input port to transmit at each time slot.
complexity of at leas('). They select the input port tha s Each pIearr)ning automaton contains the same probability dis-
granted permission to transmit over the shared-medium duriﬂgoution P(f) over the set of input ports. ThusP(r) =
each circle. 7 put ports. ; =

. . o . Pi(t), Ps(t),..., Pn(t)}, where P;(t) is the choice proba-
2) S_chemes W|th_no central _arbltrator. A distributed aIgpnthm ru ility of input port I; at time slott. Each probabilityP; () can take
ning on each input port is responsible for the medium acCeps, "y giscrete values:
control. ’ ;

: ) . Pi(t) € {0,1/k,2/k,..., 1} wherek is an integer.
In this paper, we introduce a new learning automata-based bus arb'During each time slot, an input pakt, is selected in the following

tration (LABA) igherrle, Wthiz:trif baf]ed otn a}.fai(rjdistrtibulted sltgotrithr%ay in order to be granted permission to transmit.
running on each input port. ough centralized contro (.ar itra or) is 1) 1 SN Pu(#) = 0, thenT,, is selected randomly under uni-
not employed, the bursty nature of ATM traffic is taken into consid- n=l
eration when deciding which input port will be granted permission to form distribution.
{ il ng ith putp lated 9 KI5 % thi 2) If zgzl P.(t) # 0, then I,, is selected randomly
ransmit. in comparison with previous related wor [5], [6], this paper conforming to the normalized probability distribution
presents an enhanced, simpler algorithm, as well as the advantages of M) = {0 (), () Mn(f)} where: TI(#) =

. s . . 2 = )y Lo(T), ooy IN(T (T =
adopting modularity in the switch design. Pi(t)/ er:l P (1).

_The rest of the paperis organized as follows. In Section ”1 two Varl- gelection takes place regardless of whether or not the input port has
ations of the bus arbitration scheme are presented along with efhugnée“ to transmit. Thus, during a time slot, the bus can be either busy

ways of implementing the algorithms. In Section Ill, modular versions; jqie This is used as feedback information for the choice probability
of the two basic LABA schemes are presented in order to |nvest|gq}§date of the selected input port

the scalability of the proposed scheme. In Section IV, extended simula-

tion results are presented in order to demonstrate the superiority of the 1

proposed architectures in comparison to other well-known arbitration  P,,(¢t + 1) = P..(¢) + e if bus is busy andP,,. (t) < 1
schemes without centralized control. Simulation results are also used to 1

compare the four variations with each other and demonstrate the effec- P (f +1) = Pu(t) — 7 if bus is idle andP. () > 0
tiveness of using modular architectures. Finally, Section V concludes  p (¢4 1) = P,,(¢), otherwise

the paper. ‘

1) it uses simple shared-medium architecture;

2) it enables easy implementation of switching broadcast and mul-
ticast traffic;

3) it has superior performance in comparison to other well-known
bus arbitration schemes, under bursty traffic;

4) it offers fair share of the bus’s bandwidth among the active input
ports, i.e., ports with incoming traffic.

Since simultaneous initialization of the learning automata is a pre-
II. THE LABA SWITCH _reqwsne for the op_eratlon of the distributed arblt_ra_tl_oq sc_heme, and
in order for the switch to be “hot-swappable,” reinitialization of all
We consider an ATM switch witlV input andN' output ports (de- learning automata is mandatory when new ports are inserted in the
noted asly,...,Ix andOq,...,Oxn, respectively), with each port switch while operating.
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Procedure LABA _Input _port _j
{- - - Initialization - - - }
For i :=1 to N.

number _of _cells[i] =0
Asize =0
{- - - Normal operation - - - }
Fort :=1to +4oo

If A _size > 0 then

index := |Random x A_size |

m := Alindex]
Ol 02 ()3 output ports ON Else
m := |Random x N|

Fig. 1. Combined input/output queuing shared bus switch. In transmits if it has cell to transmit

If (bus (t) = busy) and (number _of _cellsim] < k)
Inc (A _size)
B. The iLABA Scheme A[A size] :=m

. . . . Inc (number _of _cells[m])
The algorithm presented in the previous subsection seems to ha\g,ese it (bus (1) —idie) and (number  _of celis[m]  >0)

a defect: when choice probability of input paff returns to zero, Alindex] = A[A _size]

after a period of inactivity/; may be granted permission to transmit .. (A _size)

agajn only when all choice probabilities return to zero (i.e., when pec (number _of _cellsim))

22:1 P,(t) = 0), regardless of whether or not there are arrivals in

portI;. In the following, we introduce a variation of the basic schem@ocedure improved  _LABA.Input _port _j
that we call thémproved LABA (iLABA). {- - - Initialization - - - }

In iLABA, each probability P;(+) can takek discrete values: For ' =1 1©N

Pi(t) € {1/k,2/k,...,1}. Thus, choice probabilities are never set All o= )
to zero. During each time slot, an input port is granted permissigiumber -of -celisfil :=1
. . . . Assize =N
to transmit by selecting a randofy. conforming to the normalized Normal i
probability distributionII(t) = {II,(¢), s (t)....,Ix(t)} where: - Mormat operation - - - )
() = Px(t)/zN P.(t) Fort =11t +oco
J J n=1-n index := |Random * A_size |

When the learning automata are initialized, all choice probabilities

. . L m := Alindex]
are settd / k. We will comment on the differences of the two variations o .
Im transmits if it has cell to transmit

of the arbitration scheme in Section 1V, based on the simulation result§,f (bus(t) — busy) and (number _of cells[m] < K)

Inc (A _size)
C. Implementing the Bus Arbitration Schemes AlA size] :=m
. o . Inc (number _of _cells|m])
A fast algorithm of constant complexity, independentofis now ... i (bus() —idie) and (number  _of cellsim] > 1)

presented for the implementation of the following two operations Alindex] = A[A _size]
during each time slot: 1) selection of pdrt to be granted permission
to transmit over the shared bus, and 2) choice probabiity(t)
update.

We consider a variable length arralythat consists of “probability

cells.” Each probability cell represents a probability mass/@f and  Apparently, iLABA is simpler and can be implemented using fewer
belongs to a specific input port. The number of probability cellslin processor’s cycles. The serial traversal of arrays not required in
belonging to input porf; is proportional toP; (#). Therefore, in order gjther LABA or in iLABA. Therefore, the complexity of the algorithms

to selectaninput port according to probability distribufibft), we can - is not proportional to eithe¥ or #; the complexity is constant. This fact
select one of the probability cells i at random following the uniform provides a great advantage regarding scalability, in contrast to existing

distribution. The owner’s input port of the selected probability cell ifearning automata, which have complexity N').
granted permission to transmit. When the choice probabilitf; dfas '

to be increased by/k, a probability cell is added at the end of array
A, with ownerl;. If the choice probability of; has to be decreased . THE MODULAR LABA SWITCH
by 1/k, a probability cell with ownef; is removed from array.

Two versions of the algorithm are presented below, correspondingn order to increase the scalability of the proposed architecture, we
to the variations of the arbitration scheme: LABA and iLABA. In thgoropose in this section a modular variation of the basic architecture
iLABA algorithm, array 4 is initialized with one probability cell be- described earlier in this paper.
longing to each of the input ports, whereas in the LABA algorithm, The switchis composed iy modules, interconnected over a shared
A is initialized with no probability cells. In these algorithms, funcbackplane bus via module interfaces installed in each module, as de-
tion “Random” produces a random real number in the rajigeé], picted in Fig. 2. Each module servésports. TheP input ports, P
using uniform distribution. However, in order to reduce the compwutput ports, and the module interface are connected to the shared
tational complexity, this function can be implemented using precormodule bus. Both the modules’ buses and the backplane bus operate
puted random numbers. Function Btsreturns one of two values: using the LABA or the iLABA scheme.

“busy” or “idle,” representing the status of the shared bus during time In this model, each module bus operates using a speed-up factor of
slot ¢. S1 < P, while the backplane bus operates at spSed< M times

Dec (A _size)
Dec (number _of _cells[m]).
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faster than the modules’ buses, i.e., using a speed-up facter af % 1.E01 H = : i |
S5 < N.The notation 57 x S>” will be used from now on to describe f.g 1E02 H —e—k=d 2 }/
the speed-up of the modular LABA (M-LABA) and modular improved 3 1E-03 L "®k8 y a ./
LABA (M-iLABA) architectures. 8 1E-04 :
Given that there are no “hot points,” it is obvious thdt\/ of the § 1.E-05

traffic is switched locally within each module, without using the back- 1.E-06
plane bus. Thus, both the backplane bus and the modules’ buses can
operate using the speed-up factor less than the corresponding spee'a'-‘bﬁ'
factor of the basic (nonmodular) architecture. This has been proven by

LABA: Cell loss probability for various values(N = 32, .5 = 20).

our simulation results presented in the next section. destined to the same output port with probabiitand to any other of
the N — 1 output ports with probabilityl — C')/(N — 1).
IV. SIMULATION RESULTS We have run several simulation experiments for different values of

A. Input Traffic Model k,N,S, andR_. We have simulated all LABA, iLAI_BA,_moduIa_r LABA,

and modular iLABA schemes as well as time division multiple access
Our simulation model is a discrete time model (i.e., time is slottedjTDMA) and random TDMA (RTDMA) architectures. In all simula-

During each time slot, a cell may arrive in each input port. In [17], thgons, we have seB = 32 cells,) = 128 cells, andC' = 0.2. Fur-

bursty arrival process to each one of the input queues was modeiggrmore, in all modular LABA and iLABA switches, we have used

using the interrupted Bernoulli process (IBP). An input port can be — g (j.e., each module has eight ports).

either in an active state (1) for a geometrically distributed time period

orin an idle (0) state. During an active period, in each time slot, a cgl Optimalk Values

arrives at the input port with probabilipy By settingp = 1, we turn the . .

IBP model into the “ON/OFF model,” which is used in the following. _19S- 3 and 4 show the delay (in cell slots) and the cell loss proba-

At the end of each time slot, an input port may change state. An actRiLY: respectively, of LABA switches withV = 32 and.5 = 20, for

input port changes to idle state with probability, or remains in active Various values of, while 12 ranges from 0.1 to 1. Obviously, = 1 is

state with probabilityl — Pio. An idle input port changes to active € optimalk value.
state with probabilityPy; or remains idle with probability. — Py, Onthe other hand, Figs. 5 and 6 show the delay and the cell loss prob-

respectively. abi!ity, respectively, of ILABA switches with?v' = 32 andS = 20, for

According to the formulas used in [18] where the IBP model is usetf2"ious values of:. It appears that the switch with = 8 performs

if R ¢ [0, 1] is the average load offered to each input port, then sllghtly better than switches with othgr valuestofApparently,k has
a minor effect on the performance of iLABA, compared to the effect of
k on LABA.

The fact that the optimal value for LABA i8 = 1 was intuitively
expected. In LABA, when the choice probability of an input port is set
equal to zero, this input port may be granted permission to transmit if
and only if the choice probabilities of all input ports are set to zero.

R = Po1/(Po1 + Puo). (1)

If the mean burst size iB cells, then

Pio =1/B. ) This turns more into a problem @sincreases. Wheh is set to one,

the arbitration scheme follows more of a binary logic dividing the ports

From (1) and (2), it can be deduced that into active and inactive ports and sharing the bandwidth fairly among
the active ports. Furthermore, Y°_, P, (t) = 0,1, is selected at

Pyy = R/(B(1 - R)). (3) random, and.,., has cells to transmit, then no other input port may be

granted permission to transmit, unfi, transmits all the cells it has in

In our simulation model, we also take into consideration the correlas input buffer. Thus, LABA could be characterized as “greedy.”
tion of cells belonging to the same burst. Given that a burst may be anThe iLABA scheme, on the other hand, is more “granular¥ i 2
IP packet segmented in a number of ATM cells, it follows that packetd ABA with &£ = 2 has identical behavior to LABA witlk = 1).
entering the switch from a specific input port belonging to the sanMore heavily loaded ports take a larger portion of the bandwidth than
burst are likely to have the same destination port. In order to modgghtly loaded ports, as they have greater choice probabilities.
this fact, we use the correlation fact6r in the following way [19]: The optimalt values will be used in the rest of the simulation results
the first packet of a burst is destined to any of theutput ports with presented hereaftek: = 1 for LABA and M-LABA and & = 8 for
probability1/N. The rest of the cells belonging to the same burst aieABA and M-iLABA.
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C. Performance Comparison 5 120 N RTDMA
We have run several simulation experiments with= 32 andS = % 100 1 :-Ll:.;: " e
20 as well as withV = 64 andS = 40 for all of the above-mentioned T & 1| emaBa
arbitration schemes. Results concerning delay and cell loss probability 8 60 MHLABBA N
are presented in Figs. 7 and 8, respectivelyor 64, whereas results g 224____' = , },} _
for NV = 32 proved to be identical and are not reported here. 0 e e Y \\.__‘
We have to note that in our simulations the M-LABA and M-iLABA 0 01 02 03 04 05 06 07 08 09 1
switches withV = 32 have four modules with eight ports each and Load (R)

S; = 6,55 = 3. The M-LABA and M-iLABA switches withN = 64
have eight modules with eight ports each #hd= S> = 6. Thus, in Fig. 9. Standard deviation of delay considering various arbitration schemes
both casesS; x S. is less thanS used in other arbitration schemes 0 = 32,5 = 20 or6x3.
yet both modular switches perform significantly better than the non-
modular counterparts, as the traffic load is distributed over a numbenuatfile LABA and M-LABA have different behavior. We estimate that
buses. Moreover, we can make the following observations. this is again due to greedy behavior of LABA: when an input port is
We define the “critical point” of each scheme as the minimum valueund active and is granted permission to transmit, it will keep trans-
of R, where excessive cell loss probability of approximately 0.1 apnitting until its input buffer is emptied. Under high load, when input
pears. Prior to the critical points (i.d2, = 0.7 for LABA and iLABA  buffers are highly utilized, this behavior is advantageous to average
andR = 0.8 for M-LABA and M-iLABA), all four LABA variations delay, as some cells experience very low delay.
have significantly better performance than TDMA (Time Division Mul- In the following, we investigate the standard deviation of delay,
tiple Access) and RTDMA (Random Time Division Multiple Access)as a “fairness” metric. Results presented in Fig. 9 show that TDMA,
in terms of both delay and cell loss probability. LABA family schemesRTDMA, iLABA, and M-iLABA have similar behavior: delay’s
superiority over TDMA and RTDMA is due to the fact that burstinesstandard deviation increases as delay increases, it has a maximum
is taken under consideration: the use of the shared bus during the pasite at the critical point and then decreases. LABA and M-LABA,
time slot is used as feedback information. This feature is not usedadn the other hand, have different behavior: delay’s standard variation
TDMA and RTDMA where there is no feedback information of anyncreases as delay increases, throughout the ranBe of
kind. For R smaller than the critical point minus 0.1, simulation results for
Prior to the critical points, iLABA and M-iILABA have smaller loss LABA and iLABA are almost equal (fof.1 < R < 0.6). The same
probability than their counterparts LABA and M-LABA. As explainedholds for M-LABA and M-IiLABA (for 0.1 < R < 0.7). Therefore,
in SectionlV-B, iLABA is more granular than LABA and bus’s band-the greedy behavior of LABA does not seem to affect delay variation,
width is more fairly shared among active ports according to their loadhich is an obvious metric to be used as fairness metric. On the other
Itis a little harder for LABA switch to realize that a previously inactivehand, TDMA and RTDMA experience significantly higher delay vari-
port I,, changed state to active I, (¢) = 0. This leads to slightly ation up to their critical point minus 0(1R = 0.6). However, the steep
higher loss probability than iLABA. increase of LABA delay’s standard deviation beyond the critical point
Up to the critical points, minus 0.1 iLABA and M-iLABA have probably reveals a “fairness problem” in this range.
the same delay as LABA and M-LABA, respectively. After this point, Thus, in the same range of high loads, a large difference between
iLABA and M-iLABA follow the steep incline of TDMA and RTDMA, LABA and iLABA exists regarding both delay and delay’s standard
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that by increasing by 30%, delay can be decreased even by 93% and
loss probability can be decreased even by 2 orders of magnitude.

Similar simulation experiments were run for the M-iLABA switch
for different values ofS; and.S.. Again, results show that, when in-
creasing the number of ports (modules), delay and cell loss remain
almost the same provided thsi increases proportionally.

V. CONCLUSION

To conclude, we have presented four variations of a new distributed
bus arbitration scheme, based on learning automata located in each
input port, which take into consideration the burstiness of ATM traffic.
We have presented extensive simulations that reveal the superior per-

formance of the proposed schemes compared to other well-known non-

Fig. 10. Average delay of cells per input pol (= 32,5 = 20 or 6 x 3).

centralized arbitration schemes: TDMA and RTDMA. However, simu-

lation results show that, in order to support heavy load tréficz 1)
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Fig. 12. Loss probability for iLABA scheme for various values'éfandsS. [10]
[11]

variation. The former is in favor of LABA, while the latter is in favor

of iLABA. However, the usefulness of the simulation results beyond
the critical points are doubtful, because the corresponding range cou[ 2l
be characterized as “nonoperational.”

Finally, in order to investigate fairness among ports, we calculatedL3]
the average delay experienced by cells of each input port. The results
for all switches are plotted in Fig. 10. It can be observed that the high 4]
the total average, the higher the deviation of the port averages. LAB
schemes seem more fair in the arbitration among ports, while modular
schemes are the fairest among LABA family schemes. [15]

D. Scalability Analysis [16]

In order to investigate the scalability of the proposed scheme, Wﬁ?]
have run several simulation experiments of the iLABA scheme for dif-
ferent values ofV (16, 32 and 64) keeping th&/ ratio constant,
equal to 0.625. As expected, the results of both delay and cell loss probt8]
ability presented in Figs. 11 and 12 prove that performance is the sarwl)e9
when increasing the number of ports provided that the speed-up fact it ]
is increased proportionally. We have also run simulations for slightly
higher values of, increasing the&/ NV ratio to 0.8125. We can observe

with little cell losses, a high speed-up factd# ~ NN) is needed.
Modular configurations can improve the performance of the proposed
scheme and allow for the implementation of large-scale switches with
fewer requirements, in terms of speed-up.
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