
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002 815

the interconnected learning automata. The genetic adaptation and
population-based approach also helps the interconnected learning
automata to escape from local optima. The system seems to be
particularly beneficial to problems involving large action spaces
where improved convergence is most required.

Due to the high degree of variability inherent at the initial stages of
the GLA, the influence to which the crossover operator has on the pop-
ulation is difficult to assess and further studies need to be undertaken
to determine if it is, as expected, providing a valuable role. The small
study performed here does indicate that it performs a useful function
with uniform crossover giving superior convergence results in some
instances.

Furthermore, a learning automata rule which is ergodic and with no
absorbing states, such as the linear reward/penalty, may be better suited
to the genetic adaptation of learning automata for some environments
such as nonstationary ones. Further work will also provide a firm the-
oretical basis for the convergence of the GLA.
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Learning Automata-Based Bus Arbitration for
Shared-Medium ATM Switches
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Abstract—Although new high-bandwidth network technologies are
being introduced and widely deployed, asynchronous transfer mode
(ATM) is still considered one of the most important network technologies
currently in use. A number of ATM switches architectures have been
proposed in the literature. However, industry has shown that is better
to use the well-known shared-medium technique in the design of these
ATM switches. In this paper, four variations of a new distributed scheme
are proposed for the arbitration of a shared bus of an ATM switch.
These schemes are based on learning automata. Taking advantage of the
bursty nature of ATM traffic, the new arbitration scheme shows a superb
performance compared to the time division multiple access (TDMA)
scheme.

Index Terms—Asynchronous transfer mode (ATM) switches, Asyn-
chronous transfer mode (ATM) systems, improved LABA (iLABA),
learning automata-based bus arbitration (LABA), learning automata,
random TDMA (RTDMA), shared bus, time division multiple access
(TDMA).

I. INTRODUCTION

Asynchronous transfer mode (ATM) was intended to be the
switching and multiplexing technique used in the implementation of
broadband integrated services digital networks (B-ISDN). Accompa-
nied by a stack of protocols including signaling protocols, ATM was
planned to provide end-to-end connectivity with quality of service
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(QoS) satisfying the diverse requirements of applications. During the
last couple of years, new network technologies, such as Packet over
SONET and Gigabit Ethernet, were introduced and widely deployed
in the core of large ISPs, providing higher bandwidth connections.
However, ATM remains one of the main network technologies in
campus networks and in the access network connecting campus or
metropolitan networks to the core networks.

Extensive research efforts have been focused on ATM switching sys-
tems. Based on the architecture of the switch fabric, ATM switches can
be divided into the following four categories [1].

1) Shared-memory switches: Examples of industry products include
Cisco’s lightstream and catalyst product families [2] and Mar-
coni’s ASX product family [3].

2) Shared-medium switches: Examples can be found in [4] and [5].
Moreover, Marconi ASX-4000 [3] uses a TDM bus to intercon-
nect multiple “switch control processors” installed in the same
chassis.

3) Fully interconnected switches: The crossbar switch is the most
common architecture of this category. Variations of the crossbar
switch can be found in [6] and [7].

4) Space-division switches or multistage interconnection networks
(MINs): Numerous switches belonging to this category were pre-
sented in the literature (e.g., [8]–[12]). Most of them are based
on the Banyan multistage interconnection network.

Although a lot of research has been conducted on space-division
switches, industry still shows that shared-medium and shared-memory
architectures are preferable due to the ease of implementation and low
hardware complexity and cost.

Bus arbitration schemes can be divided into two main categories.

1) Schemes with central arbitrator or “queues-state dependent.” Al-
gorithms used in such schemes use a central arbiter and have a
complexity of at leastO(N). They select the input port that is
granted permission to transmit over the shared-medium during
each circle.

2) Schemes with no central arbitrator. A distributed algorithm run-
ning on each input port is responsible for the medium access
control.

In this paper, we introduce a new learning automata-based bus arbi-
tration (LABA) scheme, which is based on a fair distributed algorithm
running on each input port. Although centralized control (arbitrator) is
not employed, the bursty nature of ATM traffic is taken into consid-
eration when deciding which input port will be granted permission to
transmit. In comparison with previous related work [5], [6], this paper
presents an enhanced, simpler algorithm, as well as the advantages of
adopting modularity in the switch design.

The rest of the paper is organized as follows. In Section II, two vari-
ations of the bus arbitration scheme are presented along with efficient
ways of implementing the algorithms. In Section III, modular versions
of the two basic LABA schemes are presented in order to investigate
the scalability of the proposed scheme. In Section IV, extended simula-
tion results are presented in order to demonstrate the superiority of the
proposed architectures in comparison to other well-known arbitration
schemes without centralized control. Simulation results are also used to
compare the four variations with each other and demonstrate the effec-
tiveness of using modular architectures. Finally, Section V concludes
the paper.

II. THE LABA SWITCH

We consider an ATM switch withN input andN output ports (de-
noted asI1; . . . ; IN andO1; . . . ; ON , respectively), with each port

running atR Mb/s. Ports are interconnected over a shared bus (as de-
picted in Fig. 1) running atB Mb/s. Therefore, the bus has a speed-up
factor ofS = B=R, whereS is an integer. It will be shown in Sec-
tion IV that S can be less thanN , but not much smaller. Each input
and output port has a buffer with a capacity ofQ cells, which is nec-
essary due to the speed-up factor ofS > 1 and the absence of central
arbiter.

Each input port is equipped with a discretized learning automaton
[13]–[16]. TheN learning automata, operate concurrently to offer a
distributed arbitration scheme. The exact operation of the learning
automata is described in the following subsection. A number ofN
learning automata, one for each input port, are used instead of one
central learning automaton, in order to avoid having a single point of
failure and avoid delay and complexity due to communication between
the bus arbitrator (LA) and the input ports.

The proposed architecture has the following characteristics:

1) it uses simple shared-medium architecture;
2) it enables easy implementation of switching broadcast and mul-

ticast traffic;
3) it has superior performance in comparison to other well-known

bus arbitration schemes, under bursty traffic;
4) it offers fair share of the bus’s bandwidth among the active input

ports, i.e., ports with incoming traffic.

A. The LABA Scheme

As mentioned above, the bus arbitration scheme is based onN
learning automata, which are initialized simultaneously, operate con-
currently and independently, and use as the only feedback information
the fact of whether a cell was transmitted over the bus by the input
port that was granted permission to transmit in the previous time slot.
By using the same feedback information, they grant permission to the
same input port to transmit at each time slot.

Each learning automaton contains the same probability dis-
tribution P (t) over the set of input ports. Thus,P (t) =
fP1(t); P2(t); . . . ; PN (t)g, where Pj(t) is the choice proba-
bility of input port Ij at time slott. Each probabilityPj(t) can take
k + 1 discrete values:
Pj(t) 2 f0; 1=k; 2=k; . . . ; 1g wherek is an integer.
During each time slot, an input portIm is selected in the following

way in order to be granted permission to transmit.

1) If N

n=1
Pn(t) = 0, thenIm is selected randomly under uni-

form distribution.
2) If N

n=1
Pn(t) 6= 0, then Im is selected randomly

conforming to the normalized probability distribution
�(t) = f�1(t);�2(t); . . . :;�N (t)g where: �j(t) =
Pj(t)=

N

n=1
Pn(t):

Selection takes place regardless of whether or not the input port has
a cell to transmit. Thus, during a time slot, the bus can be either busy
or idle. This is used as feedback information for the choice probability
update of the selected input port

Pm(t+ 1) = Pm(t) +
1

k
; if bus is busy andPm(t) < 1

Pm(t+ 1) = Pm(t)�
1

k
; if bus is idle andPm(t) > 0

Pm(t+ 1) = Pm(t); otherwise:

Since simultaneous initialization of the learning automata is a pre-
requisite for the operation of the distributed arbitration scheme, and
in order for the switch to be “hot-swappable,” reinitialization of all
learning automata is mandatory when new ports are inserted in the
switch while operating.
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Fig. 1. Combined input/output queuing shared bus switch.

B. The iLABA Scheme

The algorithm presented in the previous subsection seems to have
a defect: when choice probability of input portIj returns to zero,
after a period of inactivity,Ij may be granted permission to transmit
again only when all choice probabilities return to zero (i.e., when
N

n=1
Pn(t) = 0), regardless of whether or not there are arrivals in

port Ij . In the following, we introduce a variation of the basic scheme
that we call theimproved LABA (iLABA).

In iLABA, each probability Pj(t) can takek discrete values:
Pj(t) 2 f1=k; 2=k; . . . ; 1g. Thus, choice probabilities are never set
to zero. During each time slot, an input port is granted permission
to transmit by selecting a randomIm conforming to the normalized
probability distribution�(t) = f�1(t);�2(t); . . . ;�N (t)g where:
�j(t) = Pj(t)=

N

n=1
Pn(t)

When the learning automata are initialized, all choice probabilities
are set to1=k. We will comment on the differences of the two variations
of the arbitration scheme in Section IV, based on the simulation results.

C. Implementing the Bus Arbitration Schemes

A fast algorithm of constant complexity, independent ofN , is now
presented for the implementation of the following two operations
during each time slot: 1) selection of portIm to be granted permission
to transmit over the shared bus, and 2) choice probabilityPm(t)
update.

We consider a variable length arrayA that consists of “probability
cells.” Each probability cell represents a probability mass of1=k and
belongs to a specific input port. The number of probability cells inA
belonging to input portIj is proportional toPj(t). Therefore, in order
to select an input port according to probability distribution�(t), we can
select one of the probability cells inA at random following the uniform
distribution. The owner’s input port of the selected probability cell is
granted permission to transmit. When the choice probability ofIj has
to be increased by1=k, a probability cell is added at the end of array
A, with ownerIj . If the choice probability ofIj has to be decreased
by 1=k, a probability cell with ownerIj is removed from arrayA.

Two versions of the algorithm are presented below, corresponding
to the variations of the arbitration scheme: LABA and iLABA. In the
iLABA algorithm, arrayA is initialized with one probability cell be-
longing to each of the input ports, whereas in the LABA algorithm,
A is initialized with no probability cells. In these algorithms, func-
tion “Random” produces a random real number in the range[0; 1],
using uniform distribution. However, in order to reduce the compu-
tational complexity, this function can be implemented using precom-
puted random numbers. Function Bus(t) returns one of two values:
“busy” or “idle,” representing the status of the shared bus during time
slot t.

Procedure LABA Input port j

- - - Initialization - - -

For i 1 to N.

number of cells[i] 0

A size 0

- - - Normal operation - - -

For t 1 to

If A size 0 then

index Random A size

m A[index]

Else

m Random N

I m transmits if it has cell to transmit

If (bus (t) busy) and (number of cells[m] k)

Inc (A size)

A[A size] m

Inc (number of cells[m])

Else if (bus (t) idle) and (number of cells[m] )

A[index] A[A size]

Dec (A size)

Dec (number of cells[m])

Procedure improved LABA Input port j

- - - Initialization - - -

For i to N

A[i] i

number of cells[i] 1

A size N

- - - Normal operation - - -

For t 1 to

index Random A size

m A[index]

I m transmits if it has cell to transmit

If (bus(t) busy) and (number of cells[m] k)

Inc (A size)

A[A size] m

Inc (number of cells[m])

Else if (bus(t) idle) and (number of cells[m] 1)

A[index] A[A size]

Dec (A size)

Dec (number of cells[m]).

Apparently, iLABA is simpler and can be implemented using fewer
processor’s cycles. The serial traversal of arrayA is not required in
either LABA or in iLABA. Therefore, the complexity of the algorithms
is not proportional to eitherN ork; the complexity is constant. This fact
provides a great advantage regarding scalability, in contrast to existing
learning automata, which have complexityO(N).

III. T HE MODULAR LABA SWITCH

In order to increase the scalability of the proposed architecture, we
propose in this section a modular variation of the basic architecture
described earlier in this paper.

The switch is composed byM modules, interconnected over a shared
backplane bus via module interfaces installed in each module, as de-
picted in Fig. 2. Each module servesP ports. TheP input ports,P
output ports, and the module interface are connected to the shared
module bus. Both the modules’ buses and the backplane bus operate
using the LABA or the iLABA scheme.

In this model, each module bus operates using a speed-up factor of
S1 < P , while the backplane bus operates at speedS2 < M times
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Fig. 2. Modular switch architecture.

faster than the modules’ buses, i.e., using a speed-up factor ofS1 �
S2 < N . The notation “S1�S2” will be used from now on to describe
the speed-up of the modular LABA (M-LABA) and modular improved
LABA (M-iLABA) architectures.

Given that there are no “hot points,” it is obvious that1=M of the
traffic is switched locally within each module, without using the back-
plane bus. Thus, both the backplane bus and the modules’ buses can
operate using the speed-up factor less than the corresponding speed-up
factor of the basic (nonmodular) architecture. This has been proven by
our simulation results presented in the next section.

IV. SIMULATION RESULTS

A. Input Traffic Model

Our simulation model is a discrete time model (i.e., time is slotted).
During each time slot, a cell may arrive in each input port. In [17], the
bursty arrival process to each one of the input queues was modeled
using the interrupted Bernoulli process (IBP). An input port can be
either in an active state (1) for a geometrically distributed time period
or in an idle (0) state. During an active period, in each time slot, a cell
arrives at the input port with probabilityp. By settingp = 1, we turn the
IBP model into the “ON/OFF model,” which is used in the following.
At the end of each time slot, an input port may change state. An active
input port changes to idle state with probabilityP10 or remains in active
state with probability1 � P10. An idle input port changes to active
state with probabilityP01 or remains idle with probability1 � P01,
respectively.

According to the formulas used in [18] where the IBP model is used,
if R 2 [0; 1] is the average load offered to each input port, then

R = P01=(P01 + P10): (1)

If the mean burst size isB cells, then

P10 = 1=B: (2)

From (1) and (2), it can be deduced that

P01 = R=(B(1�R)): (3)

In our simulation model, we also take into consideration the correla-
tion of cells belonging to the same burst. Given that a burst may be an
IP packet segmented in a number of ATM cells, it follows that packets
entering the switch from a specific input port belonging to the same
burst are likely to have the same destination port. In order to model
this fact, we use the correlation factorC in the following way [19]:
the first packet of a burst is destined to any of theN output ports with
probability1=N . The rest of the cells belonging to the same burst are

Fig. 3. LABA: Delay for variousk values(N = 32; S = 20).

Fig. 4. LABA: Cell loss probability for variousk values(N = 32; S = 20).

destined to the same output port with probabilityC and to any other of
theN � 1 output ports with probability(1� C)=(N � 1).

We have run several simulation experiments for different values of
k;N; S; andR. We have simulated all LABA, iLABA, modular LABA,
and modular iLABA schemes as well as time division multiple access
(TDMA) and random TDMA (RTDMA) architectures. In all simula-
tions, we have setB = 32 cells,Q = 128 cells, andC = 0:2. Fur-
thermore, in all modular LABA and iLABA switches, we have used
P = 8 (i.e., each module has eight ports).

B. Optimalk Values

Figs. 3 and 4 show the delay (in cell slots) and the cell loss proba-
bility, respectively, of LABA switches withN = 32 andS = 20, for
various values ofk, whileR ranges from 0.1 to 1. Obviously,k = 1 is
the optimalk value.

On the other hand, Figs. 5 and 6 show the delay and the cell loss prob-
ability, respectively, of iLABA switches withN = 32 andS = 20, for
various values ofk. It appears that the switch withk = 8 performs
slightly better than switches with other values ofk. Apparently,k has
a minor effect on the performance of iLABA, compared to the effect of
k on LABA.

The fact that the optimal value for LABA isk = 1 was intuitively
expected. In LABA, when the choice probability of an input port is set
equal to zero, this input port may be granted permission to transmit if
and only if the choice probabilities of all input ports are set to zero.
This turns more into a problem ask increases. Whenk is set to one,
the arbitration scheme follows more of a binary logic dividing the ports
into active and inactive ports and sharing the bandwidth fairly among
the active ports. Furthermore, if N

n=1
Pn(t) = 0; Im is selected at

random, andIm has cells to transmit, then no other input port may be
granted permission to transmit, untilIm transmits all the cells it has in
its input buffer. Thus, LABA could be characterized as “greedy.”

The iLABA scheme, on the other hand, is more “granular,” ifk > 2
(iLABA with k = 2 has identical behavior to LABA withk = 1).
More heavily loaded ports take a larger portion of the bandwidth than
lightly loaded ports, as they have greater choice probabilities.

The optimalk values will be used in the rest of the simulation results
presented hereafter:k = 1 for LABA and M-LABA and k = 8 for
iLABA and M-iLABA.
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Fig. 5. Delay for variousk values(N = 32; S = 20) for the iLABA case.

Fig. 6. Cell loss probability for variousk values(N = 32; S = 20) for the
iLABA case.

C. Performance Comparison

We have run several simulation experiments withN = 32 andS =
20 as well as withN = 64 andS = 40 for all of the above-mentioned
arbitration schemes. Results concerning delay and cell loss probability
are presented in Figs. 7 and 8, respectively, forN = 64, whereas results
for N = 32 proved to be identical and are not reported here.

We have to note that in our simulations the M-LABA and M-iLABA
switches withN = 32 have four modules with eight ports each and
S1 = 6, S2 = 3. The M-LABA and M-iLABA switches withN = 64
have eight modules with eight ports each andS1 = S2 = 6. Thus, in
both casesS1 � S2 is less thanS used in other arbitration schemes,
yet both modular switches perform significantly better than the non-
modular counterparts, as the traffic load is distributed over a number of
buses. Moreover, we can make the following observations.

We define the “critical point” of each scheme as the minimum value
of R, where excessive cell loss probability of approximately 0.1 ap-
pears. Prior to the critical points (i.e.,R = 0:7 for LABA and iLABA
andR = 0:8 for M-LABA and M-iLABA), all four LABA variations
have significantly better performance than TDMA (Time Division Mul-
tiple Access) and RTDMA (Random Time Division Multiple Access),
in terms of both delay and cell loss probability. LABA family schemes’
superiority over TDMA and RTDMA is due to the fact that burstiness
is taken under consideration: the use of the shared bus during the past
time slot is used as feedback information. This feature is not used in
TDMA and RTDMA where there is no feedback information of any
kind.

Prior to the critical points, iLABA and M-iLABA have smaller loss
probability than their counterparts LABA and M-LABA. As explained
in SectionIV-B, iLABA is more granular than LABA and bus’s band-
width is more fairly shared among active ports according to their load.
It is a little harder for LABA switch to realize that a previously inactive
port Im changed state to active ifPm(t) = 0. This leads to slightly
higher loss probability than iLABA.

Up to the critical points, minus 0.1 iLABA and M-iLABA have
the same delay as LABA and M-LABA, respectively. After this point,
iLABA and M-iLABA follow the steep incline of TDMA and RTDMA,

Fig. 7. Delay forN = 64; S = 40 switches—various arbitration schemes.

Fig. 8. Cell loss probability forN = 64; S = 40—various arbitration
schemes.

Fig. 9. Standard deviation of delay considering various arbitration schemes
for N = 32; S = 20 or 6� 3.

while LABA and M-LABA have different behavior. We estimate that
this is again due to greedy behavior of LABA: when an input port is
found active and is granted permission to transmit, it will keep trans-
mitting until its input buffer is emptied. Under high load, when input
buffers are highly utilized, this behavior is advantageous to average
delay, as some cells experience very low delay.

In the following, we investigate the standard deviation of delay,
as a “fairness” metric. Results presented in Fig. 9 show that TDMA,
RTDMA, iLABA, and M-iLABA have similar behavior: delay’s
standard deviation increases as delay increases, it has a maximum
value at the critical point and then decreases. LABA and M-LABA,
on the other hand, have different behavior: delay’s standard variation
increases as delay increases, throughout the range ofR.

ForR smaller than the critical point minus 0.1, simulation results for
LABA and iLABA are almost equal (for0:1 � R � 0:6). The same
holds for M-LABA and M-iLABA (for 0:1 � R � 0:7). Therefore,
the greedy behavior of LABA does not seem to affect delay variation,
which is an obvious metric to be used as fairness metric. On the other
hand, TDMA and RTDMA experience significantly higher delay vari-
ation up to their critical point minus 0.1(R = 0:6). However, the steep
increase of LABA delay’s standard deviation beyond the critical point
probably reveals a “fairness problem” in this range.

Thus, in the same range of high loads, a large difference between
LABA and iLABA exists regarding both delay and delay’s standard



820 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

Fig. 10. Average delay of cells per input port (N = 32; S = 20 or 6� 3).

Fig. 11. Delay for iLABA scheme for various values ofN andS.

Fig. 12. Loss probability for iLABA scheme for various values ofN andS.

variation. The former is in favor of LABA, while the latter is in favor
of iLABA. However, the usefulness of the simulation results beyond
the critical points are doubtful, because the corresponding range could
be characterized as “nonoperational.”

Finally, in order to investigate fairness among ports, we calculated
the average delay experienced by cells of each input port. The results
for all switches are plotted in Fig. 10. It can be observed that the higher
the total average, the higher the deviation of the port averages. LABA
schemes seem more fair in the arbitration among ports, while modular
schemes are the fairest among LABA family schemes.

D. Scalability Analysis

In order to investigate the scalability of the proposed scheme, we
have run several simulation experiments of the iLABA scheme for dif-
ferent values ofN (16, 32 and 64) keeping theS=N ratio constant,
equal to 0.625. As expected, the results of both delay and cell loss prob-
ability presented in Figs. 11 and 12 prove that performance is the same
when increasing the number of ports provided that the speed-up factor
is increased proportionally. We have also run simulations for slightly
higher values ofS, increasing theS=N ratio to 0.8125. We can observe

that by increasingS by 30%, delay can be decreased even by 93% and
loss probability can be decreased even by 2 orders of magnitude.

Similar simulation experiments were run for the M-iLABA switch
for different values ofS1 andS2. Again, results show that, when in-
creasing the number of ports (modules), delay and cell loss remain
almost the same provided thatS2 increases proportionally.

V. CONCLUSION

To conclude, we have presented four variations of a new distributed
bus arbitration scheme, based on learning automata located in each
input port, which take into consideration the burstiness of ATM traffic.
We have presented extensive simulations that reveal the superior per-
formance of the proposed schemes compared to other well-known non-
centralized arbitration schemes: TDMA and RTDMA. However, simu-
lation results show that, in order to support heavy load traffic(R � 1)
with little cell losses, a high speed-up factor(S � N) is needed.
Modular configurations can improve the performance of the proposed
scheme and allow for the implementation of large-scale switches with
fewer requirements, in terms of speed-up.
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