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A New Approach to the Design of Reinforcement
Schemes for Learning Automata: Stochastic
Estimator Learning Algorithms

Georgios 1. Papadimitriou

Abstract— In this paper, a new class of learning automata is in-
troduced. The new automata use a stochastic estimator and are able
to operate in nonstationary environments with high accuracy and a
high adaptation rate. According to the stochastic estimator scheme, the
estimates of the mean rewards of actions are computed stochastically.
So, they are not strictly dependent on the environmental responses.
The dependence between the stochastic estimates and the deterministic
estimator’s contents is more relaxed when the latter are old and probably
invalid. In this way, actions that have not been selected recently have
the opportunity to be estimated as ‘“‘optimal,” to increase their choice
probability, and, ¢ tly, to be selected. Thus, the estimator is
always recently updated and consequently is able to be adapted to
envir tal changes. The performance of the Stochastic Estimator
Learning Automaton (SELA) is superior to the previous well-known S-
model ergodic schemes. Furthermore, it is proved that SELA is absolutely
expedient in every stationary S-model random environment.

Index Terms—Stochastic estimator, learning automaton, nonstationary
random environment, adaptation rate, absolute expediency

I. INTRODUCTION

A Learning Automaton is a finite state machine that interacts with
a stochastic environment and tries to learn the optimal action offered
by the environment via a learning process. The learning process is as
follows (Fig. 1). The automaton chooses one of the offered actions
according to a probability vector, which at every time instant contains
the probability of choosing each action. The chosen action triggers the
environment that responds with a feedback, depending on the mean
reward of the chosen action. The automaton takes into account this
answer and modifies the probability vector by means of a learning
algorithm. A learning automaton is one that learns the action that has
the maximum mean reward and that ultimately chooses this action
more frequently than other actions.

According to the nature of its input, a learning automaton can be
characterized as a P. () or S-model one. If the input set is binary
({0.1}), it is called a P-model automaton [3], [6], [7]). A learning
automaton is a (Q-model automaton [6], [7] if the input set is a finite
set of distinct symbols. Finally, if the automaton’s input can take any
real value in the [0, 1] range, the automaton is called an S-model
one [4], [5], f6], [7].

With respect to their Markovian representation, Learning Automata
are classified into two main categories: ergodic [6], [7] or automata
possessing absorbing barriers [6], [7]. The ergodic automata con-
verge with a distribution independent of the initial state. If the
stochastic characteristics of the actions are not stable (nonstationary
environment), ergodic automata are preferred. Important results of the
application of learning automata in computer networks applications
can be found in [8] and [9].
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Fig. 1. A leaming automaton that interacts with a random environment.

The slow convergence rate of learning automata has been a limiting
factor in their applications. Estimator learning algorithms were intro-
duced by Thathachar and Sastry (2] as an effort to solve this problem
by using running estimates of the environmental characteristics.

All classic learning algorithms update the probability vector based
directly on the environment’s answer. If this answer is a reward, then
the automaton increases the probability of choosing this action (which
caused the environment’s reward) at the next time instant. Otherwise,
the choice probability of the selected action is decreased. Estimator
learning algorithms are characterized by the use of a running estimate
of the mean reward of each action. The change of the probability of
choosing an action is based on its current estimated mean reward,
rather than on the feedback of the environment. The environment
determines the probability vector, not directly, but indirectly, by
determining the estimates of the actions’ mean rewards. Even when
an action is rewarded, it is possible that the probability of choosing
another action is increased. Usually, estimator algorithms increase the
choice probability of the action that has the highest estimated mean
reward. Simulation results have shown the superiority of the estimator
learning algorithms over the classic learning algorithms [2], [3].

The performance of estimator learning algorithms decreases when
they operate in a nonstationary stochastic environment. This is due to
the existence of old, and consequently invalid, feedback information
in the estimator.

In this paper, we present a stochastic estimator scheme that in
combination with the window technique presented in [2], gives a
satisfactory solution to the low adaptation rate problem of S-model
learning automata.

According to this scheme, the estimates of the mean rewards
of actions are computed stochastically. So, they are not strictly
dependent on the environmental responses. The dependence between
the stochastic estimates and the deterministic estimator’s contents
is more relaxed when the latter are old and probably invalid. In
this way, actions that have not been selected recently, have the
opportunity to be estimated as “optimal,” to increase their choice
probability, and, consequently, to be selected. Thus, the estimator is
always recently updated, and, consequently, is able to be adapted
to environmental changes. Extensive simulation results indicate that
the proposed stochastic estimator learning automaton achieves a
significantly higher performance than the previous well-known S-
model ergodic schemes when they operate in nonstationary random
environments.

The structure of this paper is as follows. Section II introduces
the reader to the Stochastic Estimator innovation. The presentation
of the Stochastic Estimator Learning Automaton in Section III is
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followed by the proof of its absolute expediency in Section 1V.
Extensive simulation results that indicate the superiority of the
SELA’s performance are presented in Section V. Finally, a brief
discussion of the proposed scheme closes the paper in Section VI.

II. THE STOCHASTIC ESTIMATOR

Assume a learning automaton that operates in a nonstationary
environment and keeps estimates of the actions’ mean rewards. As
the time passed from the last selection of an action «; increases, there
is an increase in the probability of environmental switching during
this time. Consequently, the probability that a not updated estimation
is still valid gradually decreases. An estimator that contains “old” and
consequently invalid feedback information leads to an automaton that
is incapable of being adapted to environmental changes.

Although it may look strange, the main disadvantage of a classic
estimator is its absolute confidence to its contents. An estimator
specially designed for operation in nonstationary environments must
be able to “doubt” the validation of “old” environmental responses,
and, simultaneously, give to actions that have not been selected
recently the opportunity to be selected.

In this paper, we present an estimator scheme that expresses its
“doubt” about the validity of its “old” contents by adding a zero mean
normally distributed random number to-each action’s estimate. The
variance of the normal distribution differs from action to action and
is proportional to the time passed from the last time that each action
was selected. In this way, it gives to actions that have much time to
be selected the opportunity to be estimated as “optimal,” to increase
their choice probability, and, consequently, to be selected. This kind
of estimator, which determines the estimated mean rewards of the
actions in a nondeterministic way, is called a stochastic estimator.
As simulation results show, the use of a stochastic estimator leads
to a dramatic improvement of the automaton’s performance when it
operates in a nonstationary stochastic environment.

TII. THE STOCHASTIC ESTIMATOR LEARNING AUTOMATON (SELA)

The SELA learning automaton is defined by the quintuple
(A,B,P,E,T)y where A = {ai1,a2,---.a,} is the set of the r
offered actions (2 < r < oc). The action selected at time instant
t is denoted by a(t). B = [0,1] is the input set of the possible
environmental responses. The environmental response can take
any value in the [0, 1] interval. The environmental response at
time instant ¢ is denoted by b(t#). P is a probability distribution
over the set of actions. We have P(t) ={pi(t),p2(t),---.p. ()},
where p(f) is the probability of selecting action a, at time
instant ¢. E is the estimator that, at any time instant, contains
the estimated environmental characteristics. We define F(t) =
(D'(t), M(1),U(t)) where D'(t) = {d\(t).dy(t),---.d.(t)} is
the Deterministic Estimator Vector, which, at any time instant f,
contains the current deterministic estimates of the mean rewards of
the actions. The current deterministic estimate d;(¢) of the mean
reward of action a; is defined as follows:

(The total reward received by the automaton during
the last w times that action a; was selected. )

w

di(t) =

T wk )
e

where W is an integer internal automaton’s parameter called “learn-
ing window” and w¥(¢) for k = 1,2,---.W are the rewards
received at each one of the W’ last times that action a,; was selected.
M(t) = {mi(f).ma(t). -, m,(t)} is the Oldness Vector, which,
at any time instant, contains the time passed (time is counted in
number of iterations) from the last time each action was selected.

Thus, for every action a;, we define m;(t) =t - "2"{T : T < ¢
and a(T) = a; }. U(t) = {a1(#). ua(t), -, u,.(t)} is the Stochastic
Estimator Vector, which, at any time instant ¢, contains the current
stochastic estimates of the mean rewards of the actions. The current
stochastic estimate u,(t) of the mean reward of action «, is defined
as follows:

w,(t) = di(t) + N(0.s7(t))  where s,(¢) = min{om (1), $uax }
2)
N(0,s(t)) symbolizes a random number selected with a normal
probability distribution, with a mean equal to 0 and a variance equal
to s2(t). « is an internal automaton’s parameter that determines
how rapidly the stochastic estimates become independent from the
deterministic ones. sy,a¢ i the maximum permitted value of s;(t)
(t = 1,2,---,r). It limits the variance of the stochastic estimates in
order not to increase infinitely.
T is the learning algorithm. Its algorithmic description is presented
below.
STEP 1: Select an action a(t) = a, according to the probability
vector.
STEP 2: Receive the feedback b(t) € [0, 1] from the environ-
ment.
STEP 3: Compute the new deterministic estimate d}(¢) of the
mean reward of action a; as it is given by relation (1).
STEP 4: Update the Oldness Vector by setting m (t) = 0 and
m(t) = m(t — 1)+ 1 for all i # k.
STEP S§: For every action a;{( = 1,2.---,r), compute the new
stochastic estimate «,(#) as it is given by relation (2).
STEP 6: Select the “optimal” action a., that has the highest
stochastic estimate of mean reward. Thus, u,,, () = "™ {u,(t)}.
STEP 7: Update the probability vector in the following way.
For every action a;(i = 1,2.---,m - 1,m + 1,---,r), with
pi(t) > 1/N, set the following condition:

pilt+ 1) := pi(t) = 1/N.

For the “optimal” action a,,, set, p,,(t+1):= 1~ Z pi(t+1).
STEP 8: Go to step 1. ?

NOTES: N is an internal automaton’s parameter, which is called
“resolution parameter” and determines the step size A(A = 1/N)
of the probability updating. A is also called “probability slice.”
The initial probability distribution is computed as follows. | N/7|
probability slices A are equally distributed to all of the actions. After
this distribution, if there are remaining probability slices, they are
randomly distributed to the actions.

The environment in which the automaton operates is defined by the
triple (A, L, B), where A and B are as defined above and L(¢) =
(D(t), F(t)). We define D(t) = {d{.d5.---.dL} is the set that
contains the mean rewards of the actions at any time instant f. Thus,
di = E[b(t) | a(t) = a, € A]. F(t) = {f{(e), fale)-- . Fiio} is
the set that contains the probability density functions of the actions’
rewards at every time instant ¢. Given action a; is selected at time
instant ¢, then the environment responses with a reward taken with
a mean rlf and a density function fllo)=x <r < +4+x). Usually,
fl(x) is symmetric about the line » = 4. An environment is called a
“stationary” one if the means and the density functions of the actions’
rewards are time-invariant, and as a “nonstationary” one if they are
time-variant.

1

Zrlf pi(t).

Assume a stationary random environment. A learning zliallomalon is
said to be “absolutely expedient” (1], (6] if E[R(t+ 1) | P(t)] >
R(t) for all ¢, all pi(t) € (0. 1)(k = 1.---.r), and all possible
values of d; (i = 1.---.r).

At time instant f, the expected reward is R(#) =
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IV. PROOF OF ABSOLUTE EXPEDIENCY

Theorem 1: The SELA learning automaton is absolutely expe-
dient in every stationary random environment, where the actions’
rewards are symmetrically distributed about their means (thus, the

-

environmental noise is symmetric). Thus, if R(t) = Zd;p,-(t),

then E[R(t + 1) | P(#)] > R(t) for all , for all p:(£) € (0,1),
¢t =1,2,---, 7, and for all of the possible values of the mean rewards
dii = 1,2,---,7.

Note: The assumption of symmetrically distributed actions’ re-
wards is not arbitrary. In all known S-model stochastic environments,
the actions’ rewards are symmetrically distributed about their means.

Proof: The proof is given in the Appendix.

V. SIMULATION RESULTS

The superiority of the Stochastic Estimator Learning Automaton
(SELA) was affirmed in practice via extensive simulation results.
The SELA was compared with other S-model ergodic schemes as
the classic SLrp leaming automaton [4], [6], [8] and the gradient
projection—based G2 scheme [5].

All of the automata were simulated operating in Markovian switch-
ing environments. The automaton was made to cyclically switch
between five environments E;, FEo, F3, E4, and E5 according to a
Markov chain that determined the probability with which it switched
from one environment to the next one. Given the fact that the
automaton was in the F,(i € {1,---,5}) environment at time
instant ¢, the probability of remaining in the same environment at
time instant ¢ + 1 is equal to 1 — & (where & is a parameter that

characterizes the Markovian chain). The probability of switching to
the next environment E; (with j = (i mod 5) + 1) is equal to 8.

values and a variance 2.

A reliable performance index for an automaton that operates in a

nonstationary environment is the quantity of reward received by the

automaton during its operation. The average expected reward R* is
computed as R* = Ele E[R(t)], where E[R(t)] is the average
expected reward at time instant ¢t and % is the number of iterations
done per run (k is a very large integer number). If the five actions are
always chosen with equal probabilities (0.2), then there is no learning.
In this case, the expected reward is Ry = Zf:l 0.2 d; = 0.44. We
subtract Ro from R* in order to compute the automaton’s power P.
Thus, P = R* — Ry. Since the optimal action has a mean reward
equal to 0.70, the maximum power in such an environment is equal
10 0.70 —0.44 =0.26. The three learning automata were simulated in
Markovian nonstationary environments of the type described above
for various values of the & parameter and the variance o2 of the
Gaussian environmental noise.
The power P = R* — Ry that each automaton achieves by using
the optimum values of its internal parameters (o, W, N, spax for
SELA; a, W, gmin for G2 [5]; and a,b for SLrp [4], [6], [8]) for
various values of the environmental parameters & and ¢ appear in
Table 1. These results indicate the superiority of SELA among the
previous schemes in both rapidly and slowly switching environments;
in both high- and low-noise environments. We can perceive that the
Stochastic Estimator scheme achieves a very high power (close to the
maximum one) in both high and low noise, and also in both rapidly
and slowly switching environments.

Except for the numerical results to which we refer above, graphs
that represent the performance of SELA, G2, and SLrp in switching
environments are also presented (Figs. 2-9). The only difference
between these environments and the ones presented above is that
now the environmental switchings take place at fixed time instants.
So, we can study the adaptivity of the automata to these switchings.
These graphs represent the average expected reward (Figs. 2, 4, 6, 8)
and the average probability of selecting the optimal action (Figs. 3,
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5,7, 9) as a function of time. The environmental switchings appear
on the iterations’ axis of the graphs.

Three main results can be derived from the presented graphs.

1) The SELA learning automaton achieves a high (close to unity)
choice probability of the optimal action (accuracy).

2) Although the above result could reduce the automaton’s adap-
tivity to environmental changes, the SELA scheme remains
very sensitive to these changes.

3) Asaresult of its high accuracy and its high rate of adaptation to
environmental changes, the SELA learning automaton achieves
a high power in any nonstationary stochastic environment.

Furthermore, simulation was performed in order to perceive
whether the high performance of the SELA scheme is due to the use
of the stochastic estimator or is due solely to the properly chosen
values of W and N. The SELA scheme was simulated to operate
with o = 0 and optimal values of W and N. When o = 0, no
noise is added to the deterministic estimates. So, we can study
the performance of the automaton when deterministic estimates are
used. The result of this simulation is the following. For any values
of the environmental parameters (6§ and ¢?), the power P of the
automaton takes values close to 0 when deterministic estimates are
used (o = 0). It is clear that the use of deterministic estimates leads
to a dramatic decrease of the automaton’s power. Therefore, we can
perceive that the high power of the SELA scheme is due to the use
of the stochastic estimator.

VI. CONCLUSION

A new S-model ergodic learning automaton that uses a stochastic
estimator in order to achieve a high adaptation rate and a high accu-
racy in nonstationary random environments is introduced. Extensive
simulation results are presented that indicate that the proposed SELA
scheme achieves a superior performance over the previous well-
known S-model ergodic schemes when they operate in nonstationary
random environments. Furthermore, it is proved that the proposed
SELA learning automaton is absolutely expedient in every stationary
S-model random environment.

The stochastic estimator innovation can be the base of a new
generation of powerful learning automata with a large number of
applications.

APPENDIX

PROOF OF THEOREM 1: To prove Theorem 1, we first prove
the following three lemmas.

Lemma I: For any two actions a; and a;, let us define Pi(t) =
Prlui(t) > u;(t)]. It d; > dj, then Pi(t) > P!(t) for any time
instant ?.

Proof: If action a; was at last selected at time ¢ — m;(t), and
a mi(t) < Suax, then the stochastic estimate u;(t) is defined as
follows:

w
Zw,"(f}
_ k=1

ui(t) = W
Since wX(t)(k = 1,.-- , W) and V" are random variables symmet-
rically distributed about their means, it follows that u:(t) is also
symmetrically distributed about its mean. Its mean E[u,(t)] and its
variance ¢2(t) are as follows (where d; and ¢? denote the mean
value and the variance of the reward of action a (i = 1,---,7),
correspondingly):

+V  where V = N(0,a’m?(¢)).

Wd,;
Elu,(t)] = W

=Wo? + aZm?(t).

+ 0=d; and Var [u;(t)]

In the same way, if @ ui(t) > smax, then Efui(t)] = d; and
Var[ui(t)] = Wea? 4+ s2,,. Let us define the random variable
Z;(t) = u:(t) — u;(t). Let f(x) be the density function of Z3(t).
As discussed earlier, f(z) is symmetric about the line » = d; — d;.
If we define Pj(t) = Pr{ui(t) > u;(t)], we have Zi(¢) > 0 «
u;(t) > u;(t). Thus, we have P}(t) = f:m f(z)dz. It is known
that d; — d; > 0 and f(x) is symmetric about the line = = d; — d;.
Therefore, we have the following equation:

i d;—d; +o0 di~d;
P;(:):/O () dm+/; () dm=/0 F(z) dr+0.5

G—dJ

= Qi +0.5= Pi(t) =05+ Q)

where Q}; = fodi'dj f(z) dz. Since the variance of Zi(t) is bounded
(Var[Z}] < Wo? + Wo?4242,,.), itis derived that Q! ;> 0 for all
t. Thus, Pj(t) > 0.5. Because P;j(t)+ P/(t) = 1 and Pi(t) > 0.5,
it follows that P;(t) > P/(t) for all ¢.

Lemma 2: Assume any subset A of the action set A, such

that |Ax| = &k < r. Thus, Ay = {a:,aip, - ,a:,} C A =
{a1,az2,--,a,}. For any action a; € Ay, let us define Bi(Ax,t) =
Priui(t) = 0 {us(t)} for j = i1,4a,--+,ix]. Then, according to

the SELA learning algorithm, for any two actions a;, a; such that
a; € A and a; € Ay, and for any time instant £, we have the
following equation:

Bi(4wt) _ Fi(t)
Bi(Ak,t) — PI(t)

Proof: The above lemma is proved by using mathematical
induction on the size k of the A subset.

Lemma 3: For any two actions a; and a;, let us define the quantity
Bi(t) = Prlui(t) = " {wi(t)} for L=1,--- ,7). If di > dj, then
B.(t) > B,(t) for any t.

Proof: By using lemma 1 and lemma 2(for k = r), the above
lemma follows in a straightforward manner.

Theorem 1: The SELA learning automaton is absolutely expedient
in every stationary random environment that offers symmetrically
distributed noise. Thus, if R(t) = 3.I_, dip:(t), then E[R(t +
DIP(t)] > R(t) for all ¢, for all p;(t) € (0,1), 1 = 1,2,--,7,
and for all possible values of d;,i = 1,2,--- , 7, assuming that the
maximum reward (let d1) is unique.

Proof: Assume that at a time instant ¢, we have pi(t) € (0,1)
forall i = 1,2,---,r. Let us define ép;(t) = p;(t + 1) — pi(t) for
all¢ =1,2,---,7. The mean value of 6pi(t) is as follows:

Elsp:(t)] = B:(t)(r = 1)(1/N) - (1= Bi(t))(1/N)
=(1/N)(rBi(t) - 1)

Therefore, for any two actions a; and aj, we have the following
equation:

Elépi(t)] — Eldp;(1)] = (r/N)(Bi(t) — B;(t)).
Since lemma 3 guarantees that if d; > d;, then B;(t) > B;(t)

and the above relation guarantees that if Bi(t) > Bj(t), then
E[épi(t)] — E[ép,(t)] > 0, we have the following equation:

if d; > d; then E[6p.(t)] > E[6p;(t)] 3
Now compute the quantity E[R(t + 1)[P(t)]. We have the fol-

lowing equation:

E[R(t+ 1] =E|Y di(pi(t)+ 6pi(t)) | =

=1

R(t)+ Y di E[spi(t)].

i=1
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In order to prove that the proposed SELA scheme is absolutely
expedient, it remains to show that Y 7_, di E[6pi(t)] > O for all ¢.
Obviously, Y_;_, E[ép:(t)] = 0. ©)

Assume that actions are numbered according to the value of their
mean rewards. Thus, action a; has the highest mean reward d1, action
a2 has the second one, etc. Since d; > d; for all i = 2,--+,r, from
(3), it is derived that E[6p1(t)] > E[ép:(t)] forall i = 2,---,r and
all t. By combining the above result with relation (4), it is proved that
E[6p1(#)] > 0 for all t. Now relation (4) guarantees the following:

> E[spi(t)] <O forall k> 2 and all t. (5)
=k

We are now ready to prove that Z di El[pi(t)] > 0 for all £. We
=1

have the following conditions:

T r—2
S d. Elspi)] = Y diElopi(t))
=1 i=1

+ d—1 E[6pr—1(t)] + d-E[6p,(t)]
(Since d,—1 > d. and (5) = E[ép-(t)] < 0)

r—2
> " di Elspi(1)] + dr—1(E[$pr—1(8)] + Elépr(1)]) =
=1
r—3 T
S~ di Elepi(t)] + dv—2 E[5p,—2(t)] + dri (Y Elopi()])

i=1 r=r—1

(Since dy—2 > dy—1 and (5) = Z E[pi(t)] < 0)
i=r—1
—3 r
> > di Elbpi(t)] +dr—2( Y Elspi(t)])
2

=1 i=7—

> dy Elspi ()] +do(Y_ Elépi()]) =

i=2

(Since (4) = Y E[6p:(t)] = ~E[6pi(t)])
=2
=d, E[é]h(t)] - dzE[6p1 (t)] =
(dy — d2)E[bp1(t)] > 0
(Since di > d2 and E[ép,(t)] > 0 for all t.)

Thus, we have proved that Z d; E[6pi(t)] > 0 for all t. Conse-

i=1
quently, E[R(t+ 1) | P(t)] = R(t) + 3_I_, d. E[épi(t)] > R(t).
Thus, the SELA scheme is absolutely expedient. Q.E.D.
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Hierarchical Discretized Pursuit Nonlinear Learning
Automata with Rapid Convergence and
High Accuracy

Georgios 1. Papadimitriou

Abstract—In this paper, a new absorbing multiaction learning automa-
ton that is epsilon-optimal is introduced. It is a hierarchical discretized
pursuit nonlinear learning automaton that uses a new algorithm for
positioning the actions on the leaves of the hierarchical tree. The proposed
automaton achieves the highest performance (speed of convergence, cen-
tral processing unit (CPU) time, and accuracy) among all the absorbing
learning automata reported in the literature up to now. Extensive simula-
tion results indicate the superiority of the proposed scheme. Furthermore,
it is proved that the proposed is epsil ptimal in every
stationary stochastic environment.

Index Terms—Hierarchical learning automaton, pursuit learning algo-
rithm, nonlinear output function, epsilon-optimal learning automation,
positioning algorithm

[. INTRODUCTION

Adaptive learning is one of the main fields of artificial intelligence.
Learning automaton is one of the most powerful tools in this scientific
area. It is a finite state machine that interacts with a stochastic
environment trying to learn the optimal action of this environment
via the following learning process (Fig. 1). The automaton chooses
one of the actions according to a probability vector, which at every
instant contains the probability of choosing each action. The chosen
action triggers the environment that responds with an answer (reward
or penalty) according to the reward probability of the chosen action.
The automaton takes into account this answer and modifies its state
by means of a transition function. The new state of the automaton
corresponds to a new probability vector given by a function, called
output function. A learning automaton is one that learns the action
that has the maximum probability to be rewarded and that ultimately
chooses this action more frequently than other actions.
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